Eliminating Subjectivity, Quantifying Uncertainty, and using Machine Learning for Phylogenetic Inference

Alexandros Stamatakis^{1,2,3}

1. Institute of Computer Science, Foundation for Research and Technology - Hellas

2. Heidelberg Institute for Theoretical Studies

3. Institute of Theoretical Informatics, Karlsruhe Institute of Technology

www.biocomp.gr (Crete lab)

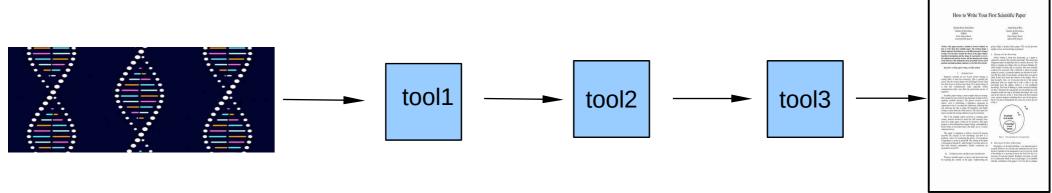
www.exelixis-lab.org (Heidelberg lab)

Congratulations to the Organizers

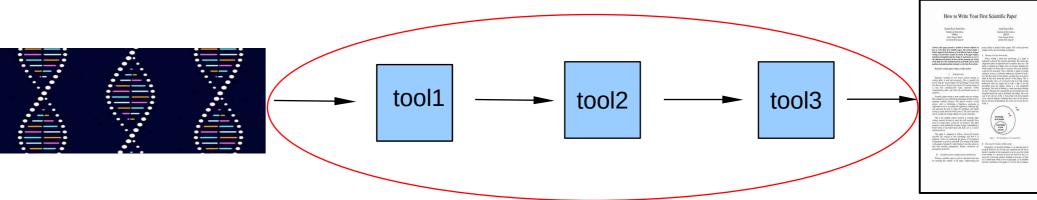
Group Setup

- Computational Molecular Evolution group Heidelberg Institute for Theoretical Studies
 - 5 PhD students + 1 staff Scientist
 - www.exelixis-lab.org
- *Biodiversity Computing Group* Institute of Computer Science, Foundation for Research and Technology Hellas (Crete)
 - 3 PhD Students + 3 PostDocs
 - www.biocomp.gr
 - EU ERA chair program
- Ancient DNA lab Institute of Biology and Biotechnology, Foundation for Research and Technology Hellas (Crete)
 - https://ancient-dna.gr/index.php/en/
 - 2 PostDocs + 1 lab technician + 1 archaeologist

Bioinformatics

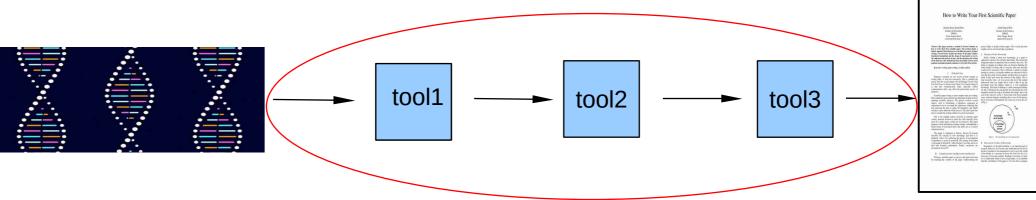


Bioinformatics

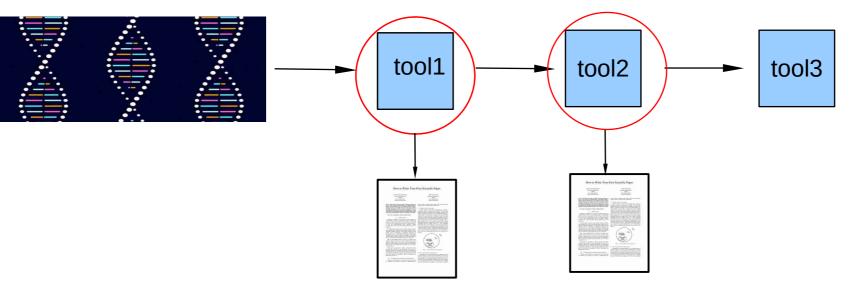


Data-centric: pipeline building

Bioinformatics



Data-centric: pipeline building



Method-centric: tool building

Outline

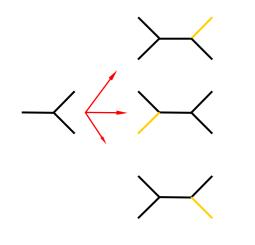
- Introduction to Phylogenetic Inference
- Sources of Uncertainty
- Phylogenetic Difficulty
- Using Phylogenetic Difficulty
- Bootstrap Prediction
- Other Stuff we work on

The number of trees

 $3 \text{ taxa} \rightarrow 1$ tree

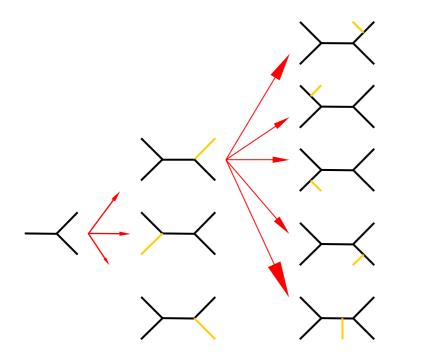
 \prec

The number of trees

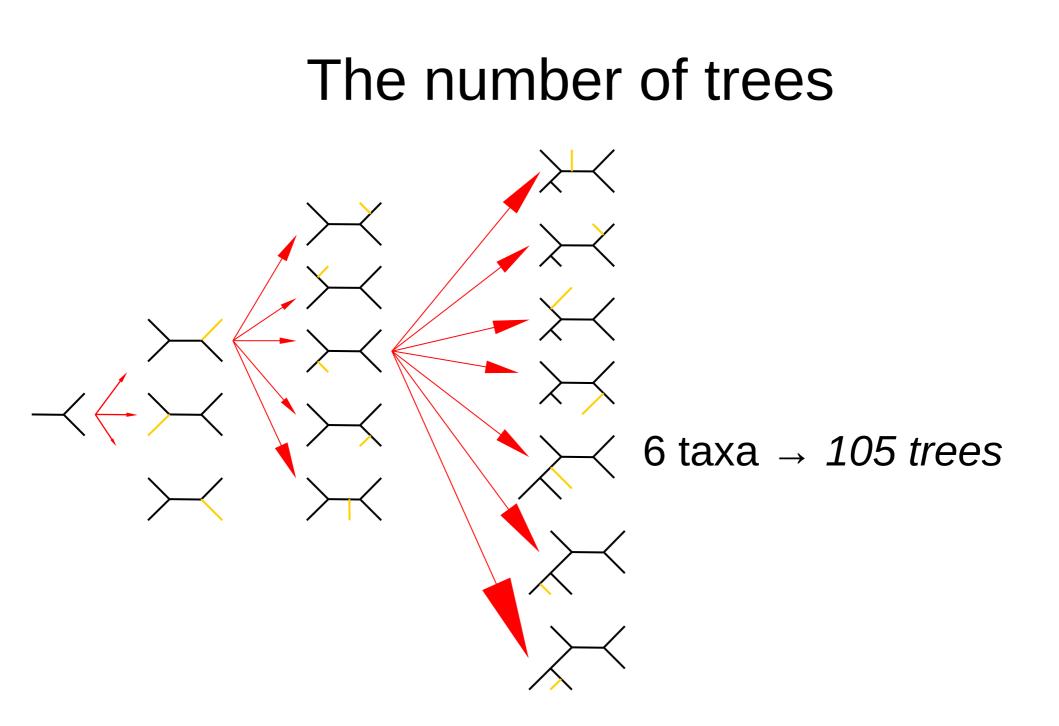


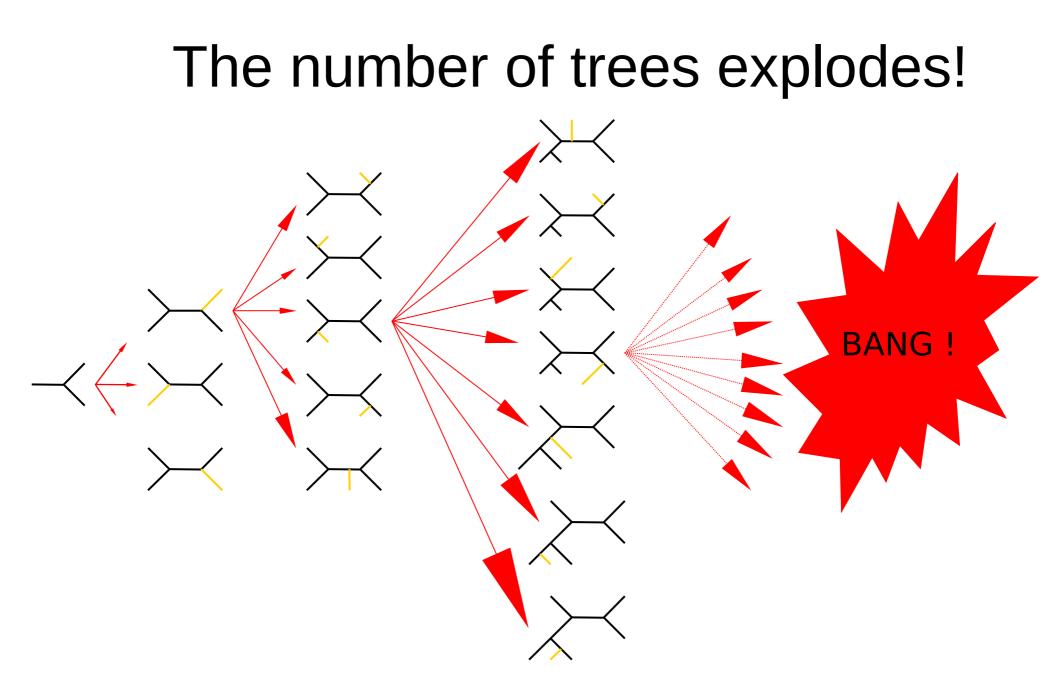
4 taxa \rightarrow 3 trees

The number of trees



5 taxa \rightarrow 15 trees





possible trees with 2000 taxa

stamatak@exelixis:~/Desktop/GIT/TreeCounter\$./treeCounter -n 2000

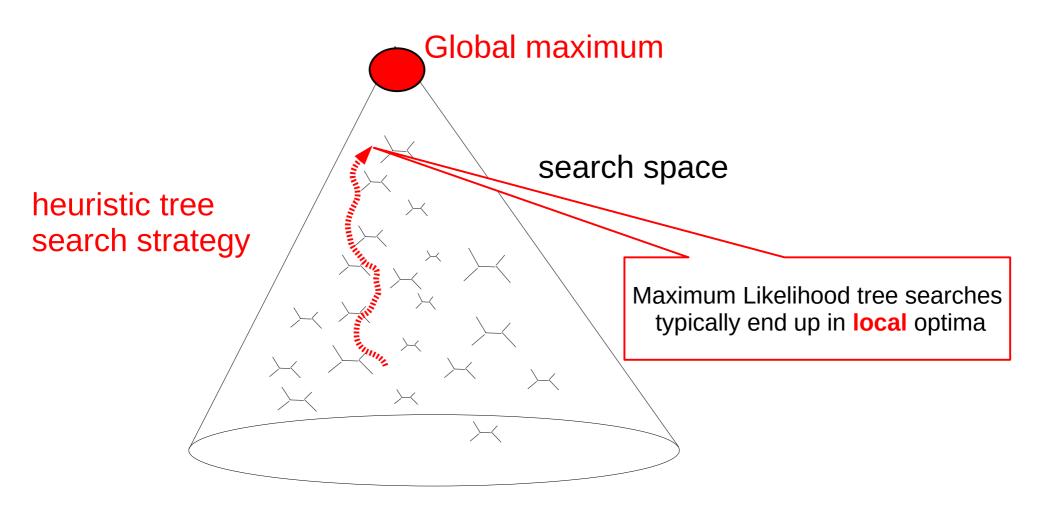
GNU GPL tree number calculator released June 2011 by Alexandros Stamatakis

Number of unrooted binary trees for 2000 taxa: 30049638174211656151632910065681814981377232074237013089504954043012636525258308210827685996688247000464352

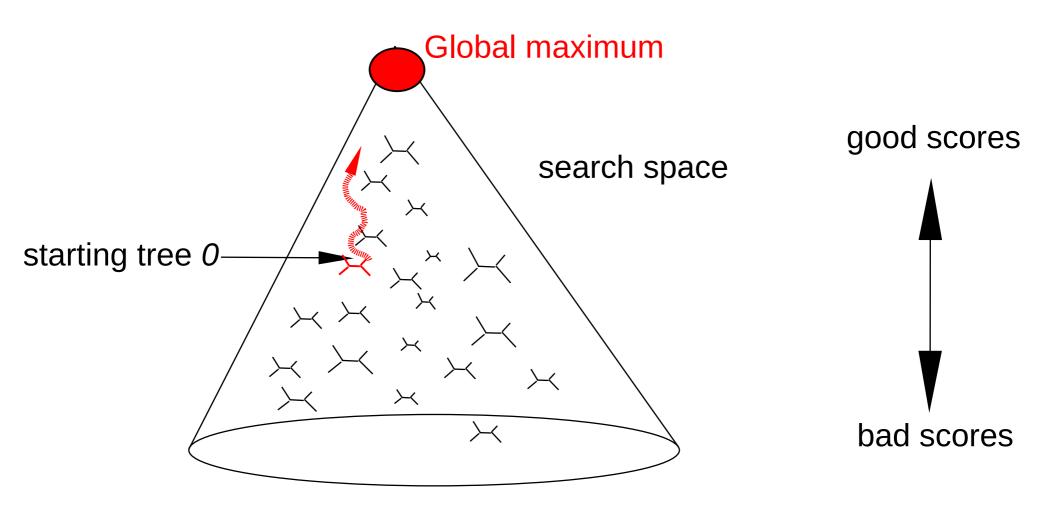
Problem Complexity



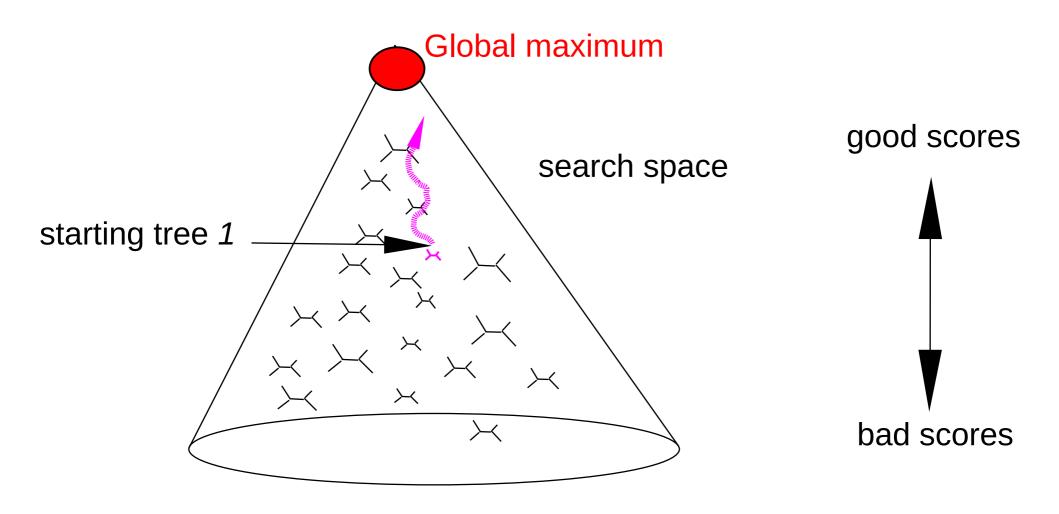
Problem Complexity



Starting Trees



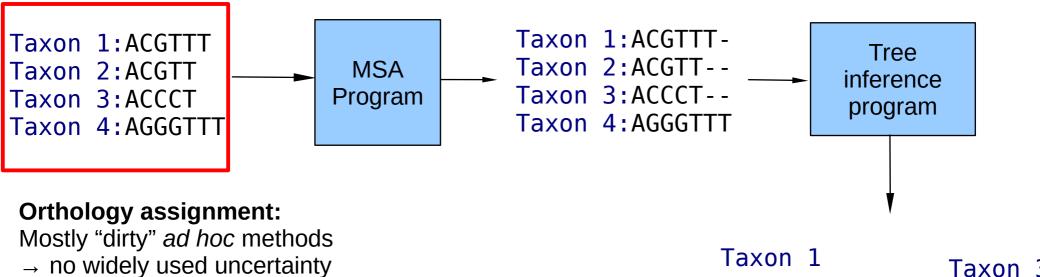
Starting Trees



Outline

- Introduction to Phylogenetic Inference
- Sources of Uncertainty
- Phylogenetic Difficulty
- Using Phylogenetic Difficulty
- Bootstrap Prediction
- Other Stuff we work on

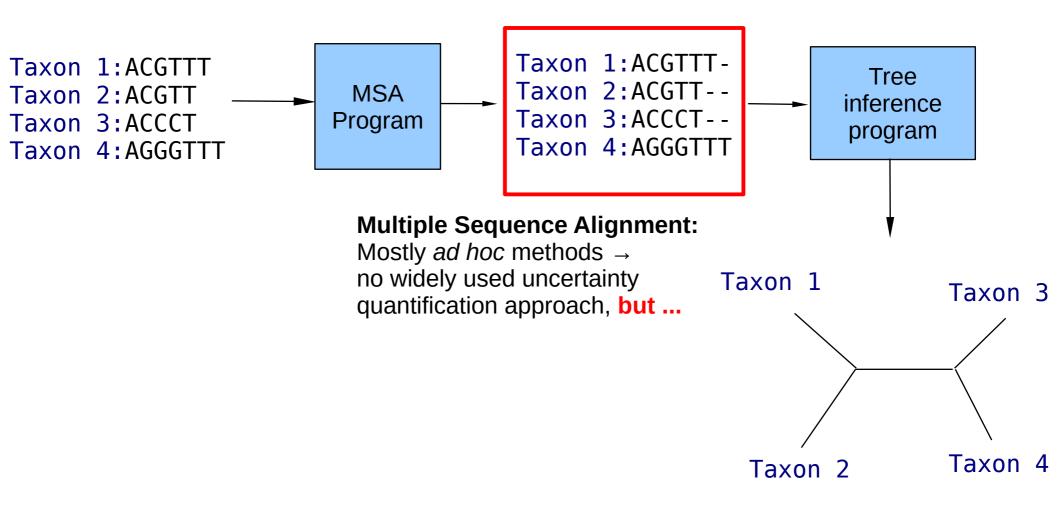
Tree Inference Pipeline



quantification approach

Taxon 2 Taxon 4

Tree Inference Pipeline



Muscle5

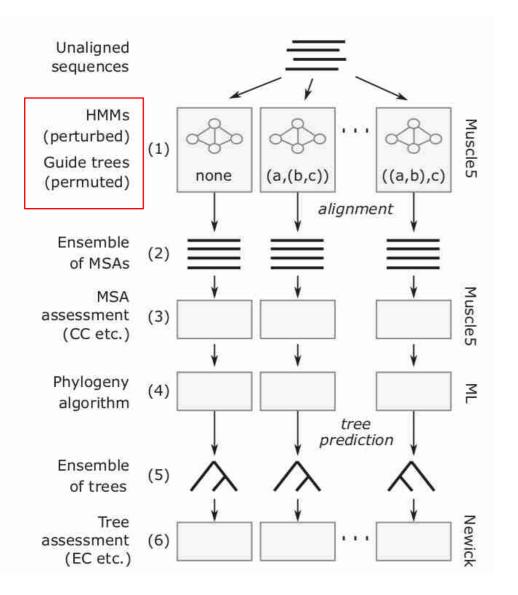
Article Open Access Published: 15 November 2022

Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny

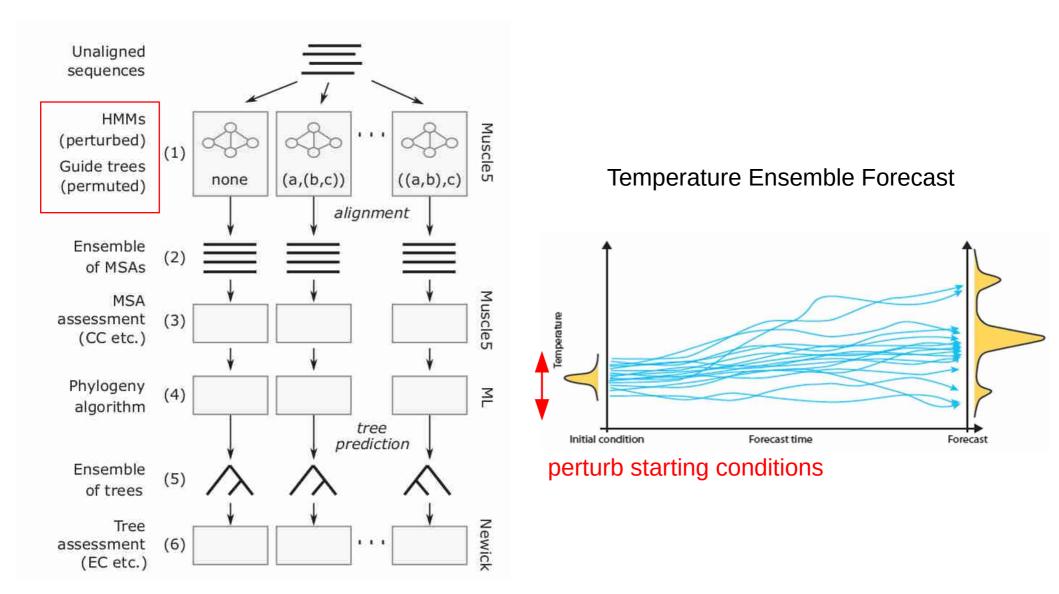
Robert C. Edgar

Nature Communications 13, Article number: 6968 (2022) Cite this article

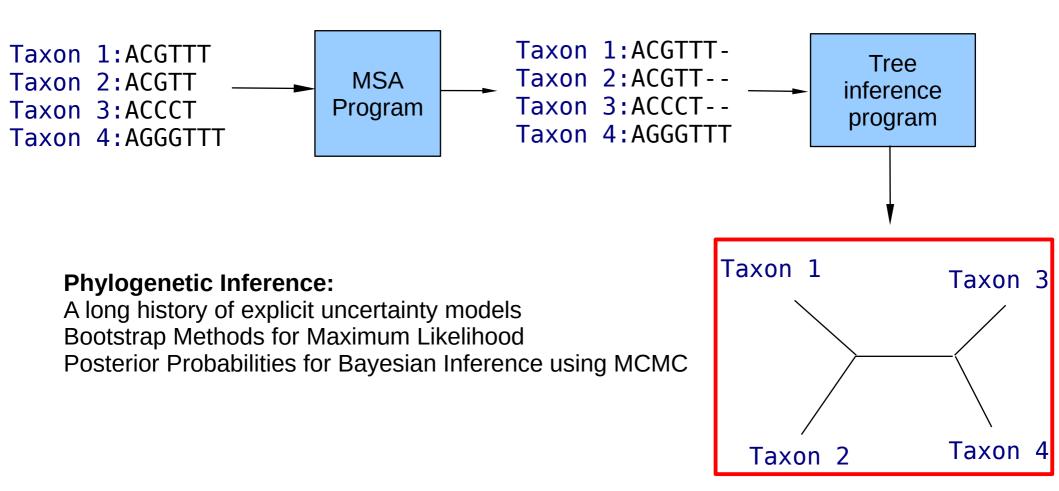
Muscle5



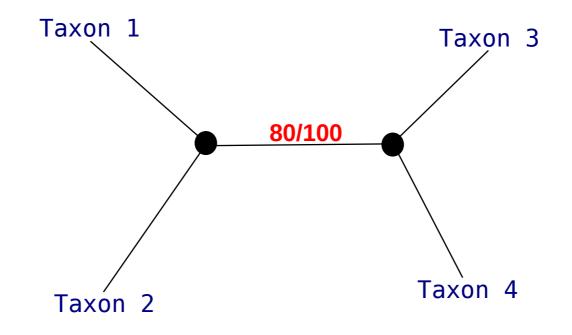
Muscle5



Tree Inference Pipeline



A Tree with Support Values



Sources of Uncertainty thus far

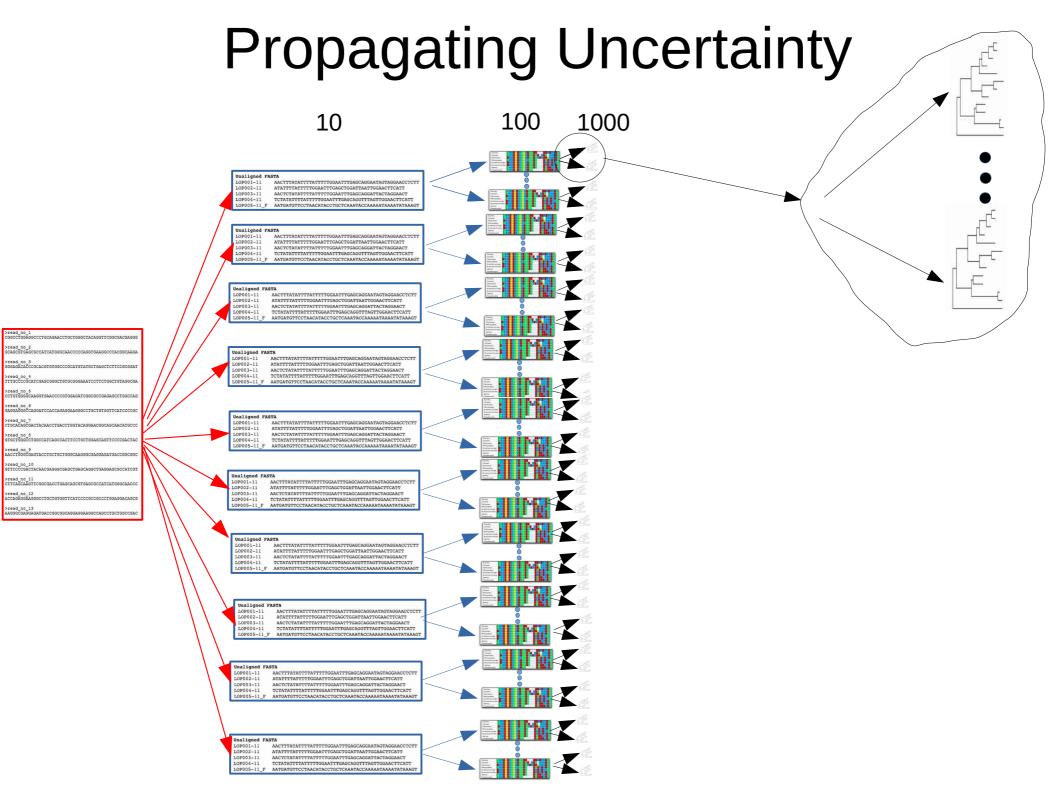
- 1 Orthology Assignment
- 2 Multiple Sequence Alignment
- 3 Tree Inference
- 4 BUT

Software Issues

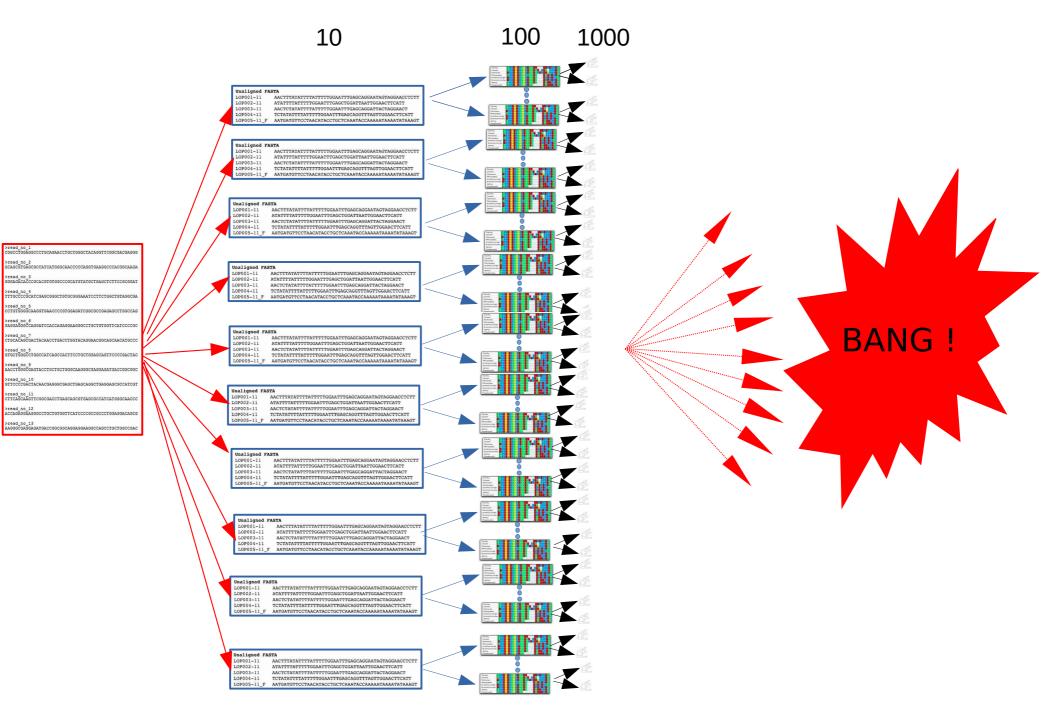
- Bugs & Software Quality
- Numerical Instability
- Reproducibility (2 versus 4 cores)
- We re-designed & optimized numerous tools the Next Generation (NG) tools series
 - RAxML-NG
 - ModelTest-NG
 - EPA-NG
 - Lagrange-NG

Sources of Uncertainty

- 1 Orthology Assignment
- 2 Multiple Sequence Alignment
- 3 Tree Inference
- 4 Software issues
- 5 BUT



Propagating Uncertainty



Propagating Uncertainty

Exponential ensemble explosion with pipeline length

 \rightarrow We need a **targeted** approach to explore ensemble space

Outline

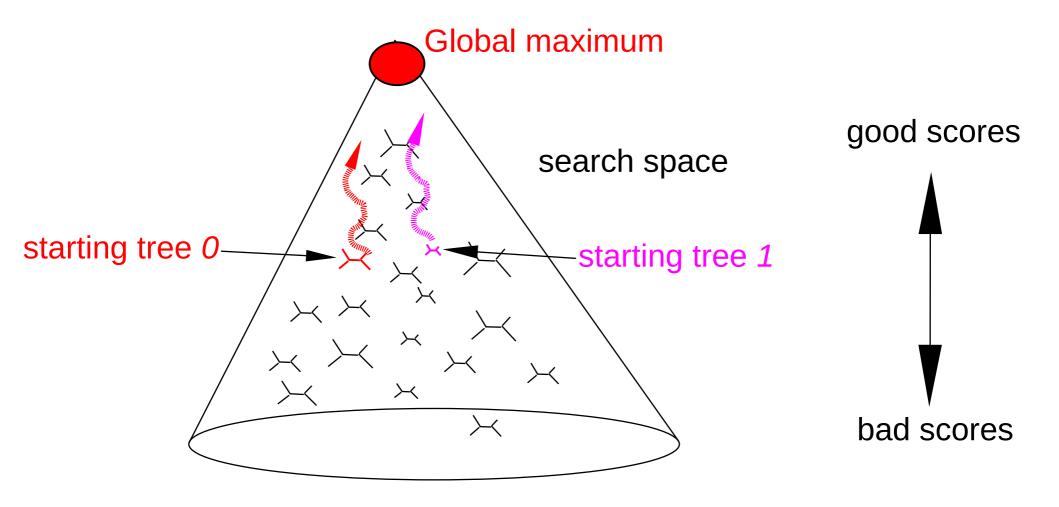
- Introduction to Phylogenetic Inference
- Sources of Uncertainty
- Phylogenetic Difficulty
- Using Phylogenetic Difficulty
- Bootstrap Prediction
- Other Stuff we work on

Disclaimer

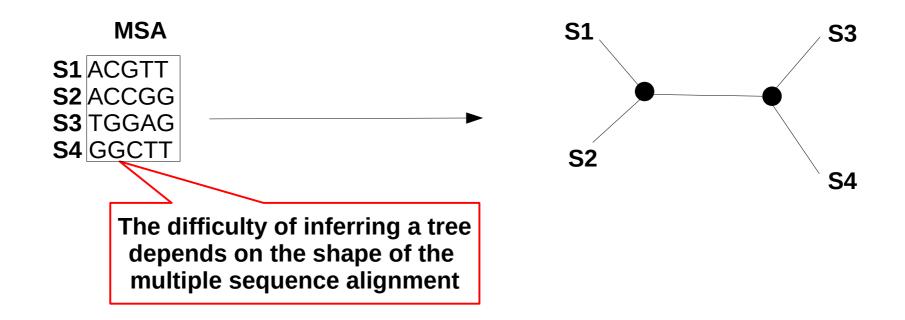
- I never wanted to do machine learning
- Somebody must keep working on algorithms, HPC, hardware architectures, C++
- Current generation of CS students

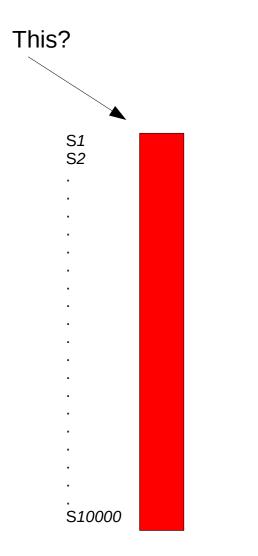
"I want to do something with data science and/or machine learning"

Can we predict how difficult a phylogenetic analysis will be?



Phylogenetic Inference

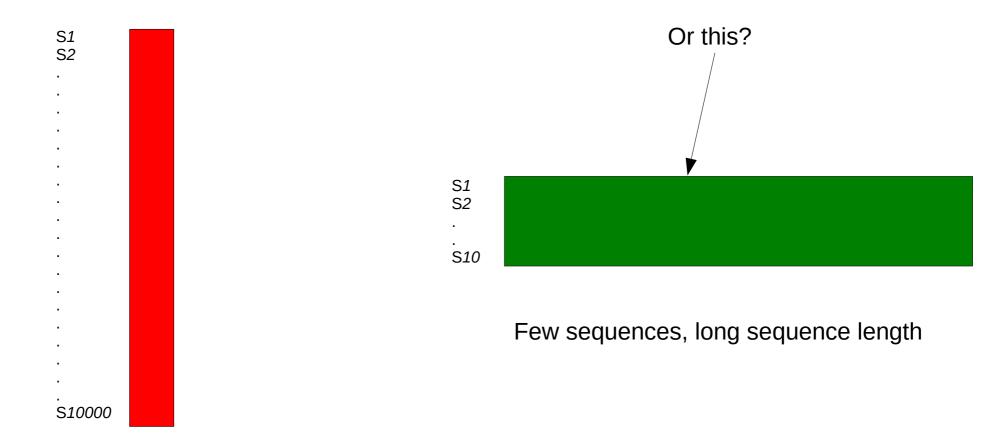


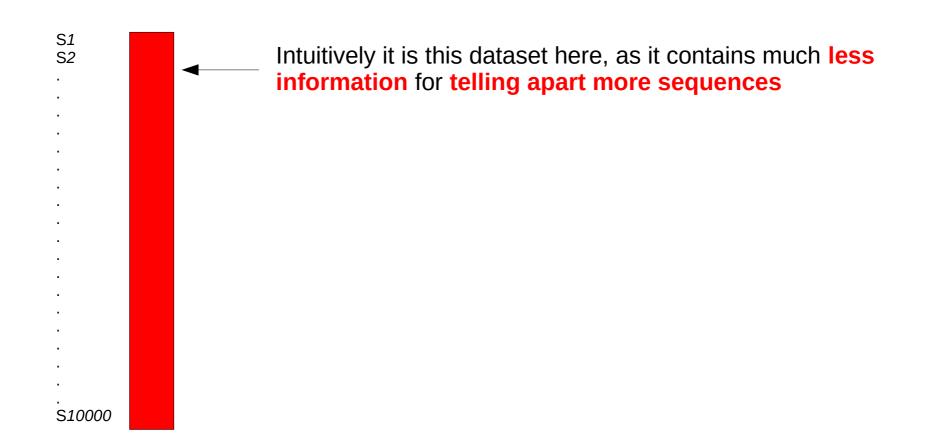


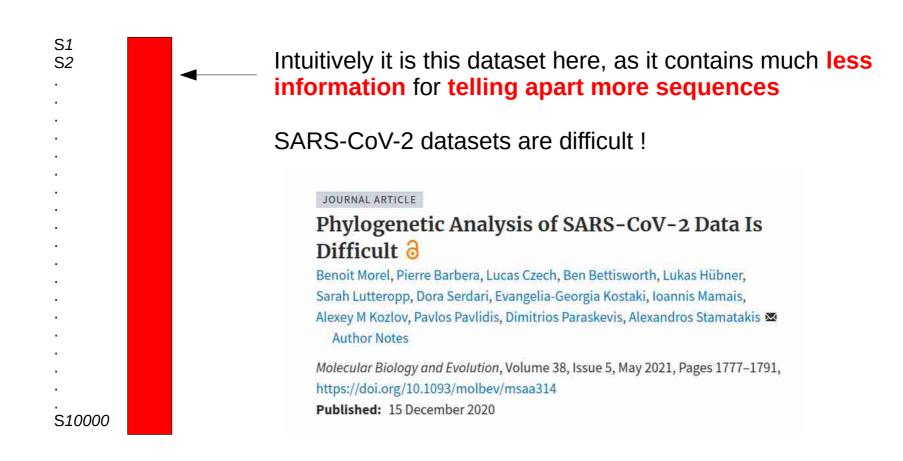
Which data is more difficult to analyze?

Thousands of sequences, short sequence length

Which data is more difficult to analyze?







SARS-CoV-2

- Assembled 4 distinct datasets
- Per dataset
 - \rightarrow executed 100 independent tree searches
- We use likelihood models

 \rightarrow determine trees that are **not statistically significantly different** from each other in these sets of 100 trees

Results SARS-CoV-2

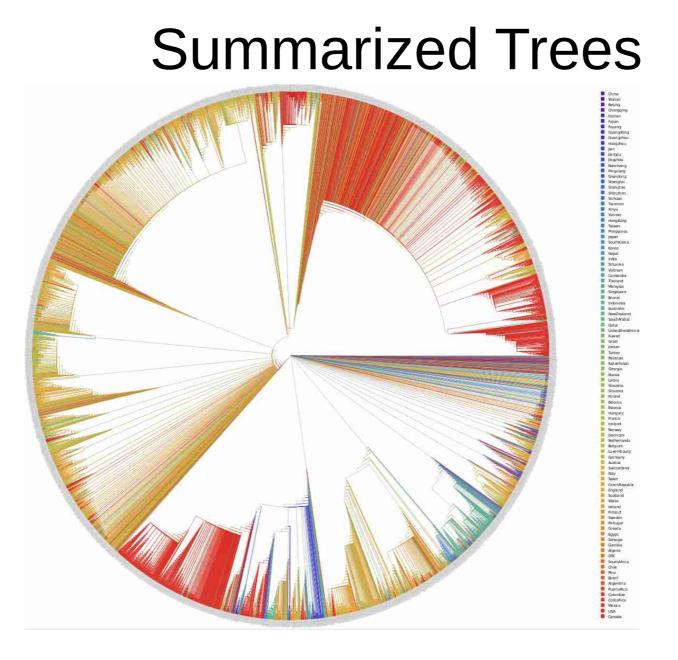
• For all 4 datasets about 70 out of 100 trees are not significantly different from each other with respect to their likelihood scores

Results SARS-CoV-2

- For all 4 datasets about 70 out of 100 trees are not significantly different from each other with respect to their likelihood scores
- But, their average pair-wise topological differences amount to about **70%** !

Results SARS-CoV-2

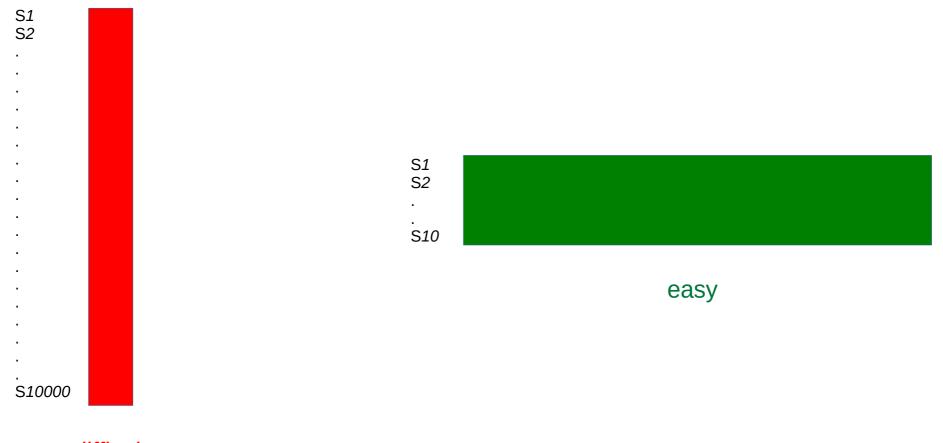
- For all 4 datasets about 70 out of 100 trees are not significantly different from each other with respect to their likelihood scores
- But, their average pair-wise topological differences amount to about **70%** !
 - \rightarrow extremely weak signal
 - \rightarrow don't draw conclusions from a single tree!
 - \rightarrow summarize the trees via summary statistics!



SARS-CoV-2 consensus tree colored by country

Difficulty of an MSA

This is **hand-wavy** \rightarrow can we quantify & predict this?



difficult

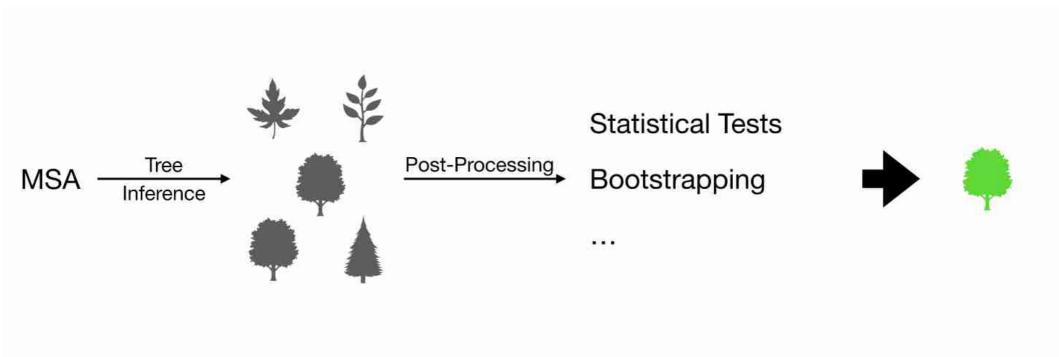
Difficulty Prediction

JOURNAL ARTICLE

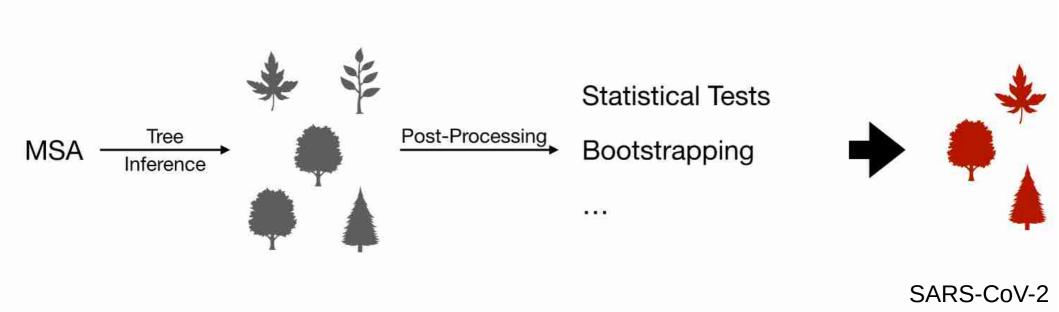
From Easy to Hopeless — Predicting the Difficulty of Phylogenetic Analyses 3

Julia Haag 🕿, Dimitri Höhler, Ben Bettisworth, Alexandros Stamatakis

Molecular Biology and Evolution, Volume 39, Issue 12, December 2022, msac254, https://doi.org/10.1093/molbev/msac254 Published: 17 November 2022



Difficult



What does Difficulty mean?

Difficulty = ruggedness of the tree space

- Few highly similar tree topologies
- Single likelihood peak

 Highly distinct topologies, statistically indistinguishable

Difficult

Multiple likelihood peaks

Predicting Difficulty with Pythia

- Pythia = Boosted Tree Regressor
- Supervised Regression Task
 - Predict difficulty between **0** (easy) and **1** (difficult)
 - Ground truth difficulty as training target based on 100 distinct Maximum Likelihood tree inferences
- Initially trained on 4K empirical MSAs
 - Mean absolute error: 2.5%

Pythia developments

- New release (May 19, 2023)
 - Trained on 12K datasets
 - 11,108 DNA MSAs
 - 979 Protein MSAs
 - 460 Morphological MSAs
 - Two new features
 - Improved accuracy
 - Mean absolute error: 0.07 (previously 0.09)
 - Mean absolute percentage error: 1.7% (previously 2.5%)

SARS-CoV-2 data

PYTHIA output

The predicted difficulty for MSA examples/covid.fasta is: 0.84		
FEATURES:		
num_taxa: 4869	JOURNAL ARTICLE	
num_sites: 28361	Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult 👌	
E]	Benoit Morel, Pierre Barbera, Lucas Czech, Ben Bettisworth, Lukas Hübner, Sarah Lutteropp, Dora Serdari, Evangelia-Georgia Kostaki, Ioannis Mamais,	
num_sites/num_taxa: 5.82	Alexey M Kozlov, Pavlos Pavlidis, Dimitrios Paraskevis, Alexandros Stamatakis 🕿 Author Notes	
[]	<i>Molecular Biology and Evolution</i> , Volume 38, Issue 5, May 2021, Pages 1777–1791, https://doi.org/10.1093/molbev/msaa314	
avg_rfdist_parsimony: 0.79	Published: 15 December 2020	
proportion_unique_topos_parsimony: 1.0		
Feature computation runtime: 1830.182 seconds		

[...]

PYTHIA Features

Table 1. Importance of the Subset of Features we use to Train Pythia.

	Feature	Impurity Importance
ny = 76%	% Unique topologies parsimony trees	42.9%
	RF-distance parsimony trees	33.2%
	Entropy	17.0%
	Patterns-over-taxa	13.6%
	% Gaps	2.5%
	Bollback	2.3%
	Sites-over-taxa	1.5%
	% Invariant	0.6%

Parsimony = 76%

Outline

- Introduction to Phylogenetic Inference
- Sources of Uncertainty
- Phylogenetic Difficulty
- Using Phylogenetic Difficulty
- Bootstrap Prediction
- Other Stuff we work on

Using Pythia as End-User

- **Prior** to tree inference
 - \rightarrow determine analysis & post-analysis setup
 - → adjust/modify MSA
 - \rightarrow explore data filtering & assembly strategies
 - \rightarrow adjust user/reviewer expectations about data

Simulation Study Using Pythia as Developer

New Results

A Follow this preprint

A representative Performance Assessment of Maximum Likelihood based Phylogenetic Inference Tools

Dimitri Höhler, Julia Haag, 😳 Alexey M. Kozlov, Alexandros Stamatakis doi: https://doi.org/10.1101/2022.10.31.514545

This article is a preprint and has not been certified by peer review [what does this mean?].

Likelihood Score as Function of Difficulty

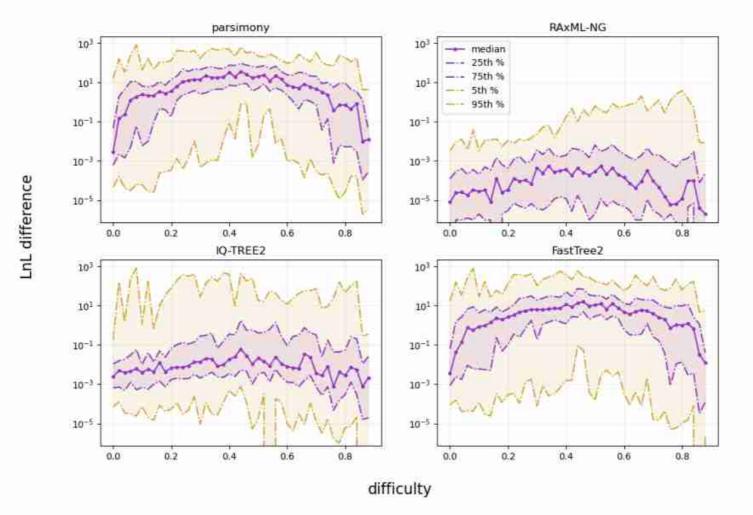


Fig. 3. Absolute log-likelihood (LnL) score differences (log scale) from the best-known ML tree on TreeBASE data.

Adaptive RAxML-NG

JOURNAL ARTICLE

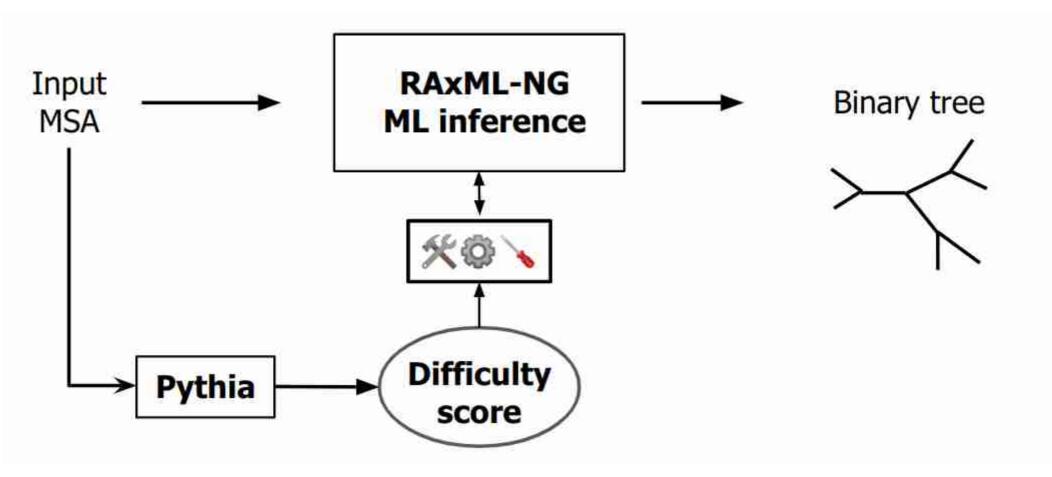
Adaptive RAxML-NG: Accelerating Phylogenetic Inference under Maximum Likelihood using Dataset Difficulty 3

Anastasis Togkousidis ☎, Oleksiy M Kozlov, Julia Haag, Dimitri Höhler, Alexandros Stamatakis Author Notes

Molecular Biology and Evolution, Volume 40, Issue 10, October 2023, msad227, https://doi.org/10.1093/molbev/msad227

Published: 06 October 2023 Article history -

Adaptive RAxML-NG



Pythia Difficult 1.0 9 O 0.7 a . Input Pythia Intermediate 0.5 -MSA 9 9 0.3 -• • • • - 0.0 Easy

Adaptive RAxML-NG Heuristics

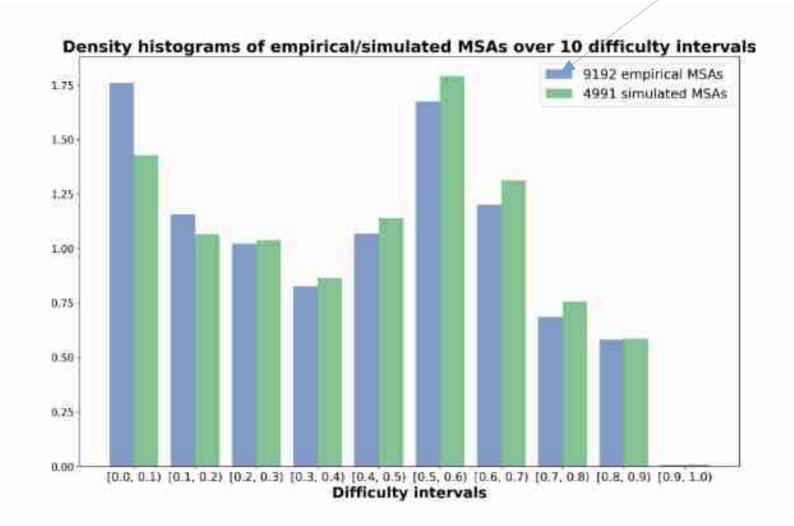
- As a function of PYTHIA difficulty modify
 1) number of independent ML tree searches
 - 2) thoroughness of the searches

Test Data & Setup

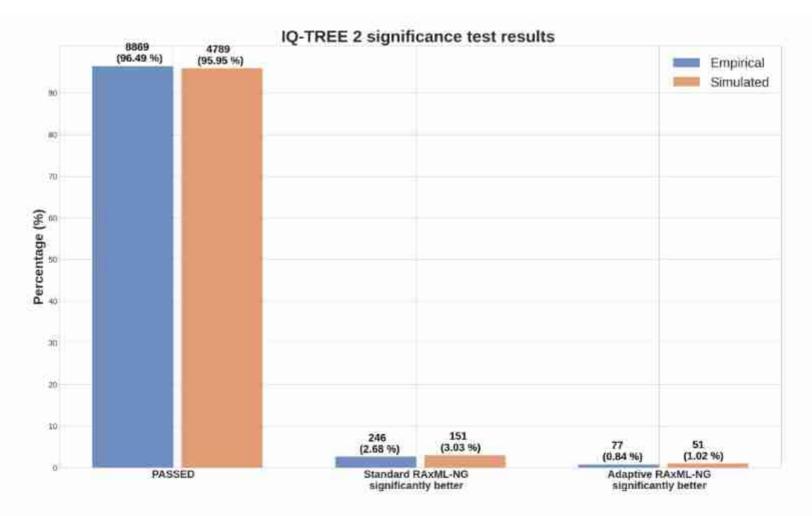
- 9192 empirical MSAs from TreeBase
- 4991 simulated MSAs

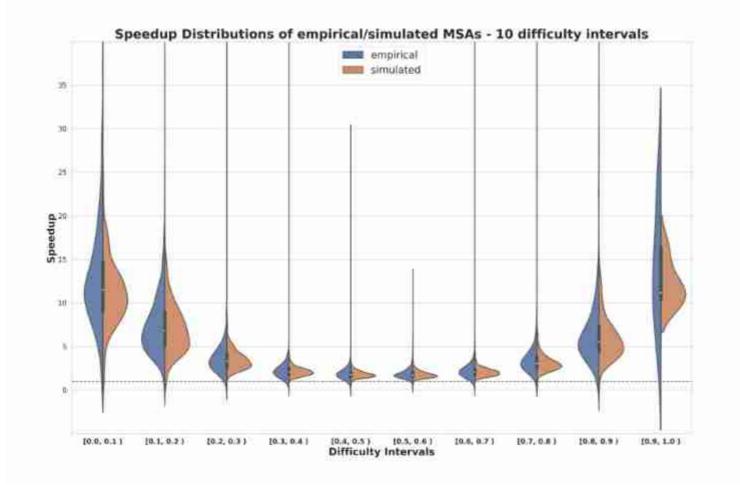
Difficulty Score Distribution

TreeBase

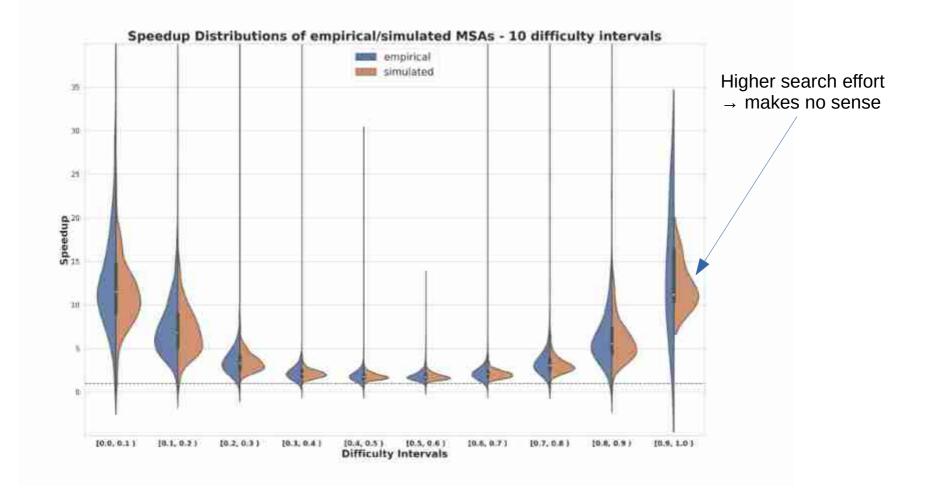


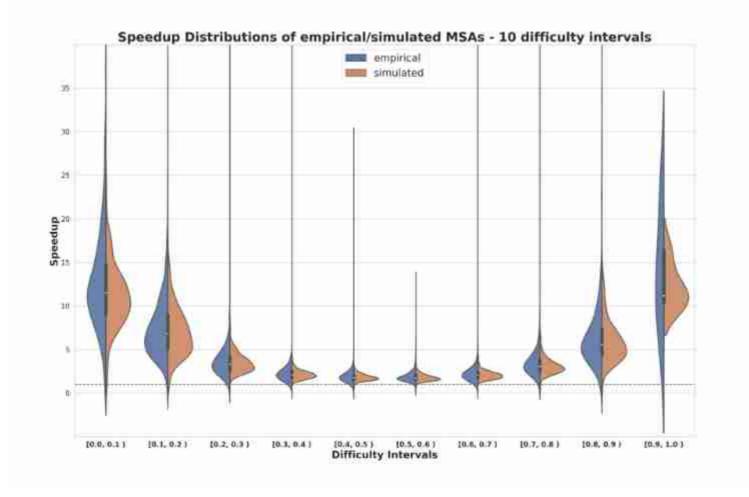
Significance Tests











Overall accumulated speedup over all difficulties approx. 3 on empirical data

Outline

- Introduction to Phylogenetic Inference
- Sources of Uncertainty
- Phylogenetic Difficulty
- Using Phylogenetic Difficulty
- Bootstrap Prediction
- Other Stuff we work on

Educated Bootstrap Guesser

THE PREPRINT SERVER FOR BIOLOGY

New Results

Predicting Phylogenetic Bootstrap Values via Machine Learning

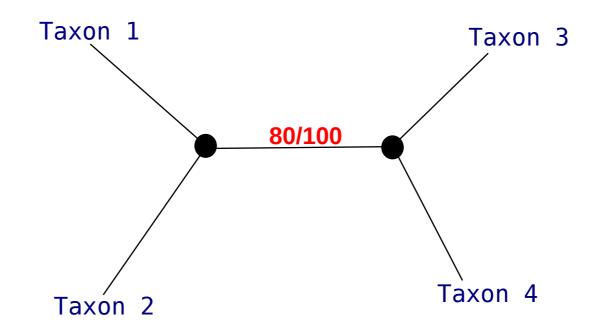
Julius Wiegert, Dimitri Höhler, 😳 Julia Haag, 😳 Alexandros Stamatakis doi: https://doi.org/10.1101/2024.03.04.583288

This article is a preprint and has not been certified by peer review [what does this mean?].

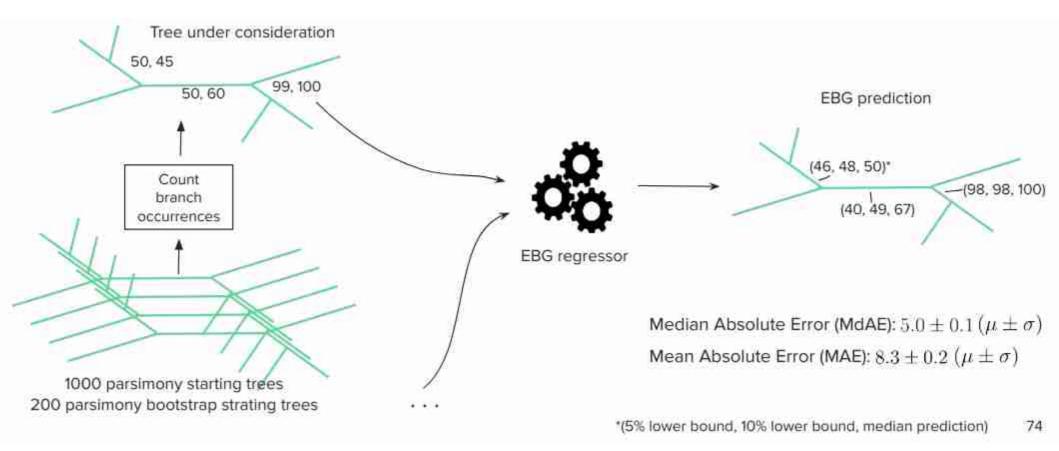
Accelerated Bootstrapping

• Bootstrapping is compute-intensive

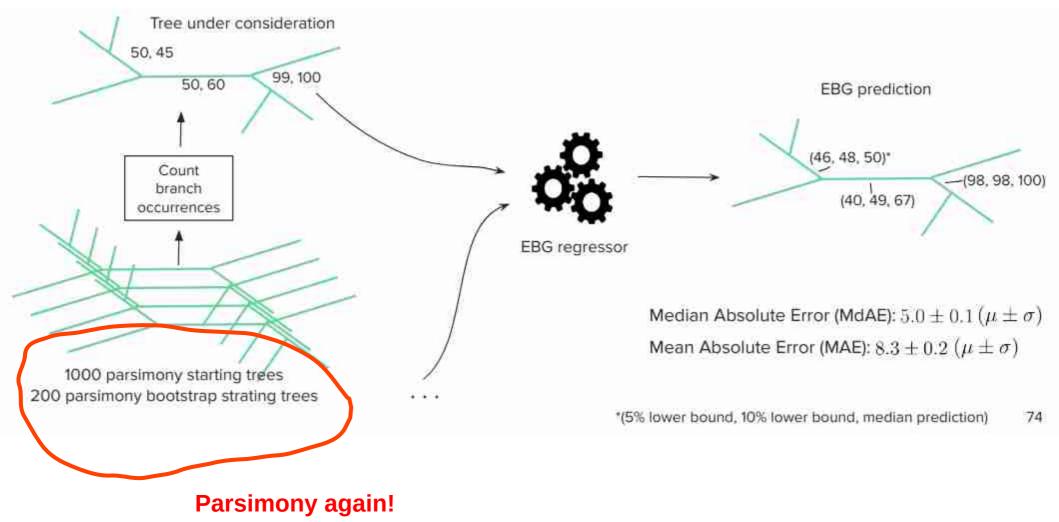
 \rightarrow Can we predict Bootstrap Support Values via Machine Learning ?



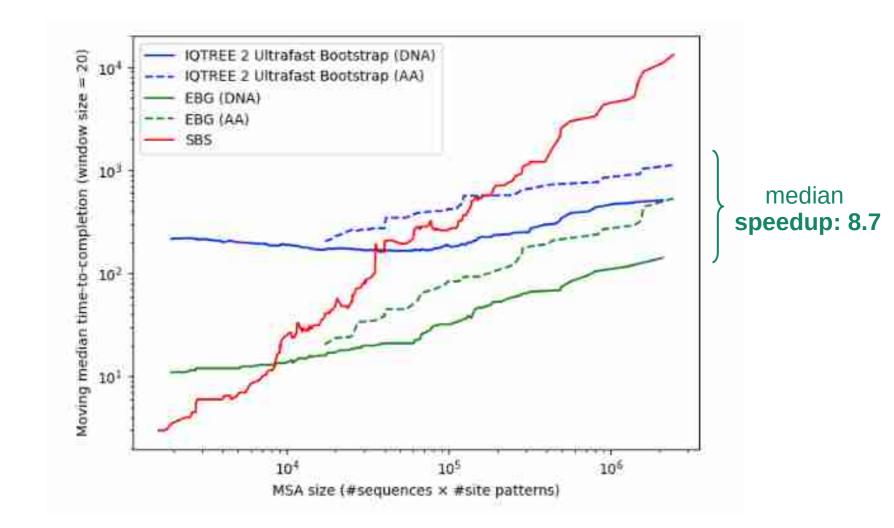
EBG: Educated Bootstrap Guesser work in progress



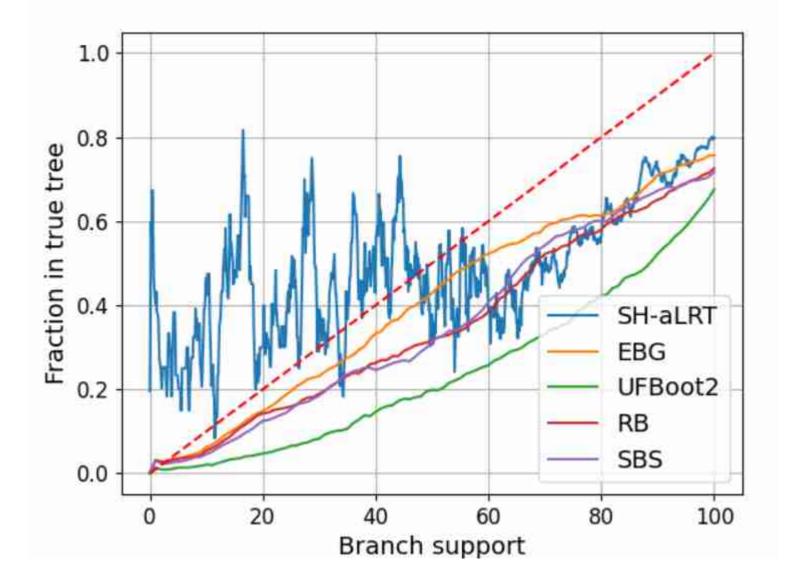
EBG: Educated Bootstrap Guesser



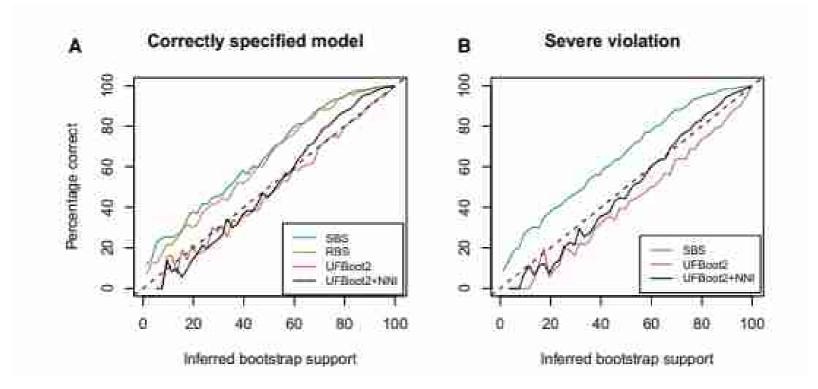
Run-times



Accuracy – Simulated Data

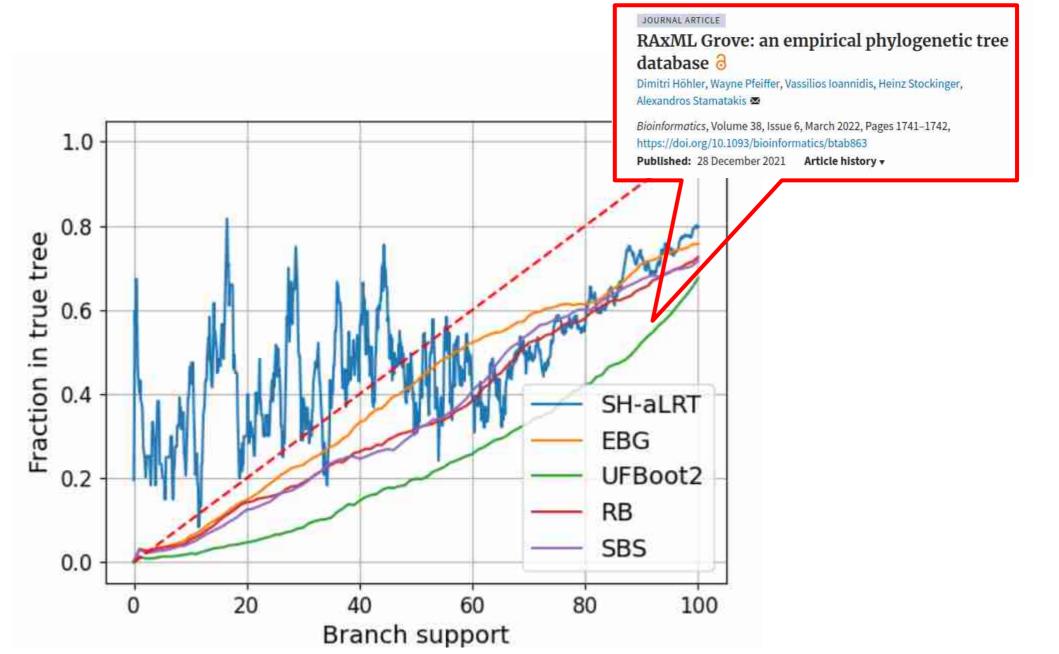


But ...



Accuracy on simulated data from UFBoot2 paper

Accuracy – Simulated Data



Empirical Data

- EBG support value correlations with Standard Bootstrap Supports
- 220 unseen empirical MSAs from TreeBase

22999_3	1.0	0.017	19060_0	0.96	0.0	16009_1	0.89	0.0
23036_0	0.94	0.0	19447_0	0.91	0.0	16105.0	0.88	0.0
23279_0	0.96	0.0	19466_3	0.92	0.0	16141_1	0.78	0.041
23282.0	0.95	0.0	19509_1	0.99	0.0	16190.2	0.94	0.0
23436.0	0.82	0.0	19579_0	0.91	0.0	16269_0	0.92	0.0
23535_1	0.84	0.0	19740_5	0.82	0.0	16313.11	0.94	0.0
23593_0	0.95	0.0	19782_3	0.78	0.0	16453_0	1.0	1.0
23768_0	0.89	0.0	19797_0	0.95	0.0	16629_0	0.88	0.0
23884_0	0.93	0.0	19889_1	0.89	0.0	16632_2	0.96	0.0
25031_0	0.8	0.0	19925_0	0.96	0.0	16637.2	0.97	0.0
25084.2	0.9	0.0	19925.6	0.95	0.0	16675.0	0.88	0.0
25181_0	0.94	0.0	20079_4	0.94	0.0	16737_0	0.84	0.0
25256.20	0.93	0.002	20196.18	0.96	0.0	16748_0	0.84	0.0
25256_23	1.0	0.0	20196_19	0.96	0.0	16785_1	0.9	0.0
25284_1	0.9	0.0	20239_0	0.93	0.0	16855.2	0.97	0.0
25341_1	0.92	0.0	20239_3	0.95	0.0	17014.0	0.9	0.0
25554.1	0.92	0.0	20250_1	0.87	0.0	17168_0	0.95	0.0
25635.1	0.83	0.0	20736_0	0.94	0.0	17390_1	0.92	0.0
25818_4	0.94	0.0	20944_1	0.79	0.0	17443_0	0.92	0.0
25829_8	0.87	0.0	21191_0	0.83	0.0	$17594_{-}11$	0.93	0.0
26085_4	0.95	0.0	21303_0	0.92	0.0	17594.13	0.95	0.0
26188.0	0.85	0.0	2180_2	0.95	0.0	17666_0	0.89	0.0
26212.1	0.91	0.0	21817.6	0.87	0.0	17723_0	0.94	0.0
26551.4	0.95	0.0	2191.2	0.94	0.0	17749_1	0.9	0.0
26628_4	0.97	0.0	21973_9	0.98	0.0	17761_0	0.91	0.0
26669_46	0.96	0.0	22052_0	0.93	0.0	17774_4	0.97	0.0
26988_12	0.79	0.0	22091_1	0.78	0.0	17791_0	0.85	0.0
26988_8	0.97	0.0	2217_0	0.93	0.0	17814.0	0.93	0.0
27016_1	0.94	0.0	22200_0	0.91	0.0	17878.9	0.85	0.0
27176_0	0.93	0.0	2224_0	0.92	0.0	17885_1	0.96	0.0
27689_0	0.91	0.0	22408.11	0.97	0.0	17896_31	0.92	0.0
28112.0	0.85	0.0	22429_0	0.9	0.0	18077_0	0.94	0.0
28258.0	0.98	0.0	22442.11	0.92	0.0	18131_0	0.84	0.0
28360.17	0.98	0.0	22442.6	0.85	0.002	18218.1	0.96	0.0
28360_18	0.96	0.0	22475_0	0.9	0.0	18258.2	0.92	0.0
28360_2	0.95	0.0	2248_0	0.96	0.0	18438_0	0.75	0.003
28360_30	0.95	0.0	2250_0	0.91	0.0	18448_0	0.89	0.0
28360_8	0.96	0.0	22552_1	0.91	0.0	18465_0	0,94	0.0
362_1	0.89	0.0	2256.1	0.98	0.0	18638_0	0.87	0.0
684_1	0.96	0.0	22751_1	0.95	0.0	18638_1	0.92	0.0
688_1	0.95	0.0	22798_0	0.85	0.0	18654_0	0.95	0.0
9936.1	0.97	0.0	22805.0	0.93	0.0	18850.2	0.62	0.574
9972_0	0.96	0.0	22941_0	0.92	0.0	18883.0	0.92	0.0

Feature Importance

	Feature	Importance in %
Parsimony: 85%	PBS	82.2
	PS	3.1
	Normalized branch length	2.0
	# child inner branches	1.7
	Skewness PBS	1.5

PBS = **P**arsimony **B**ootstrap **S**upport from *200* parsimony bootstraps PS = **P**arsimony **S**upport from *1000* parsimony starting trees

Feature Importance

A Renaissance of parsimony as predictor for likelihood?

	Feature	$Importance \ in \ \%$
Parsimony: 85%	PBS	82.2
	PS	3.1
	Normalized branch length	2.0
	# child inner branches	1.7
	Skewness PBS	1.5

PBS = **P**arsimony **B**ootstrap **S**upport from *200* parsimony bootstraps PS = **P**arsimony **S**upport from *1000* parsimony starting trees

Outline

- Introduction to Phylogenetic Inference
- Sources of Uncertainty
- Phylogenetic Difficulty
- Using Phylogenetic Difficulty
- Bootstrap Prediction
- Other Stuff we work on

Simulated Data Suck!

JOURNAL ARTICLE

Simulations of Sequence Evolution: How (Un)realistic They Are and Why 👌

Johanna Trost, Julia Haag 🕿, Dimitri Höhler, Laurent Jacob, Alexandros Stamatakis, Bastien Boussau Author Notes

Molecular Biology and Evolution, Volume 41, Issue 1, January 2024, msad277, https://doi.org/10.1093/molbev/msad277

Published: 20 December 2023 Article history •

We can distinguish between empirical and simulated MSAs with high accuracy using two distinct and independently developed machine learning based classification approaches!

Pandora *Work in Progress*

Estimating Dimensionality Reduction Stability of Genotype Data via Bootstrapping

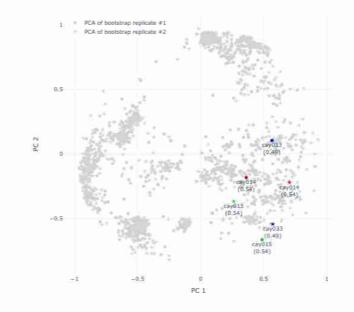


Figure 6: The three Çayönü individuals with the lowest PSVs plotted for two randomly selected bootstrap PCA results. The gray dots indicate the projections of one bootstrap, the gray stars indicate the projections of the second bootstrap. The highlighted individuals indicate the respective projection of the three Çayönü individuals in both PCAs.

CSH Cold Spring Laboratory The PREPRINT SERVER FOR BIOLOGY

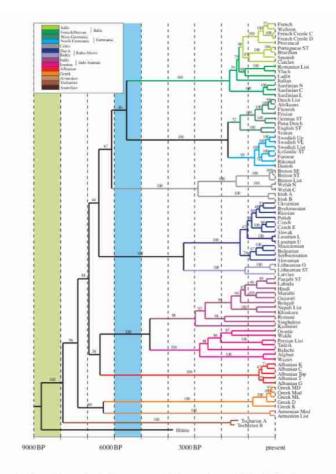
New Results

A Follow this preprint

Pandora: A Tool to Estimate Dimensionality Reduction Stability of Genotype Data

Julia Haag, (a) Alexander I. Jordan, (a) Alexandros Stamatakis doi: https://doi.org/10.1101/2024.03.14.584962

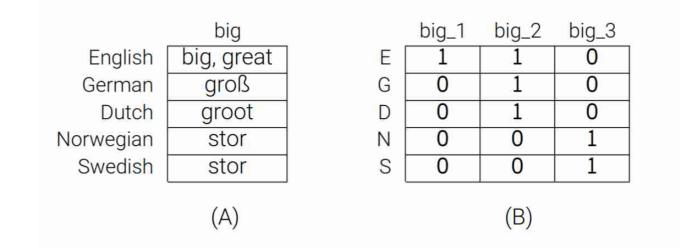
Language Evolution Eliminating Subjectivity



Russell Gray, Quentin Atkinson, and Simon Greenhill. 2011. Language Evolution and Human History, pages 269–288

Cognate Data

- A cognate dataset
 - relies on a list of concepts
 - provides a word for each concept in each language
 - selects every-day words describing the concepts precisely (A)
 - Is represented by a binary character matrix (B) for the tree inference with RAxML-NG



Synonyms

- Synonyms
 - distinct words describing the same concept
 - e.g. "töten" and "umbringen" both describe the concept "to kill" in German
- Traditional recommendation in linguistics: Select one (most frequent) synonym only → work intensive & subjective choice

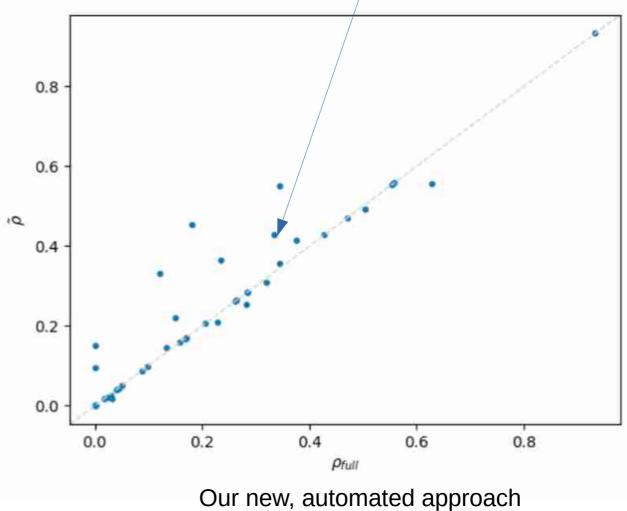
Synonyms

- Synonyms
 - distinct words describing the same concept
 - e.g. "töten" and "umbringen" both describe the concept "to kill" in German
- Traditional recommendation in linguistics: Select one (most frequent) synonym only → work intensive & subjective choice
- Can we somehow include all synonyms without any subjective choice ?
- Can phylogenetic likelihood models naturally accommodate all synonyms ?

Yes we can

Distances to gold standard reference tree on 44 datasets

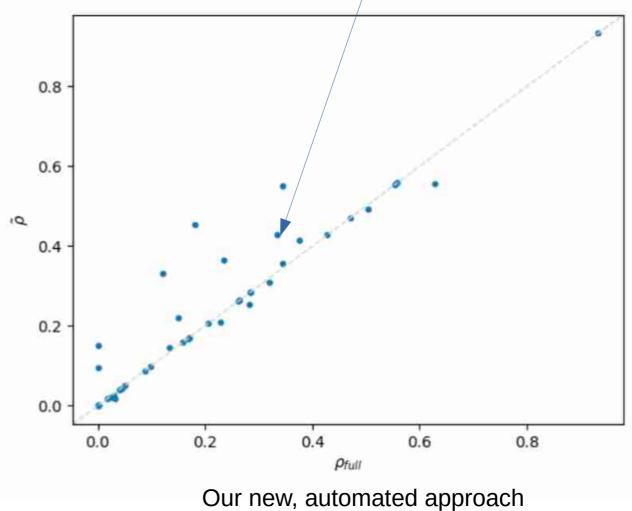
Median of standard Approach → synonym sampling



Yes we can

Distances to gold standard reference tree on **44 datasets**

Median of standard Approach → synonym sampling



Energy Efficiency

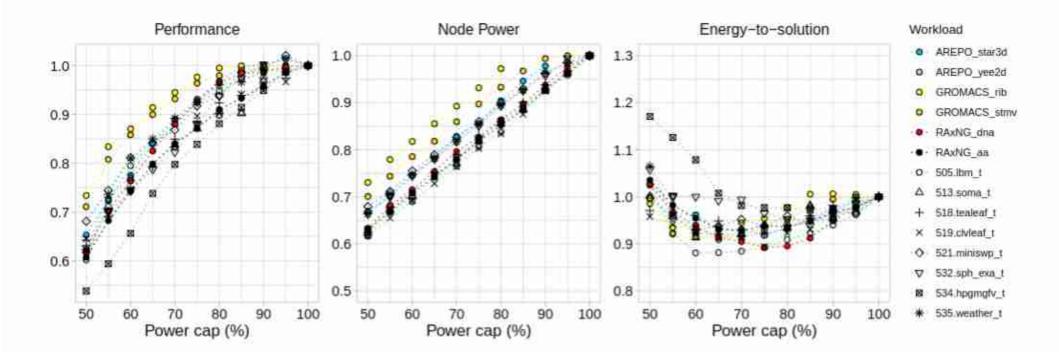
EcoFreq: compute with cheaper, cleaner energy via carbon-aware power scaling

Oleksiy M. Kozlov^{1,50} and Alexandros Stamatakis^{2,1,3}

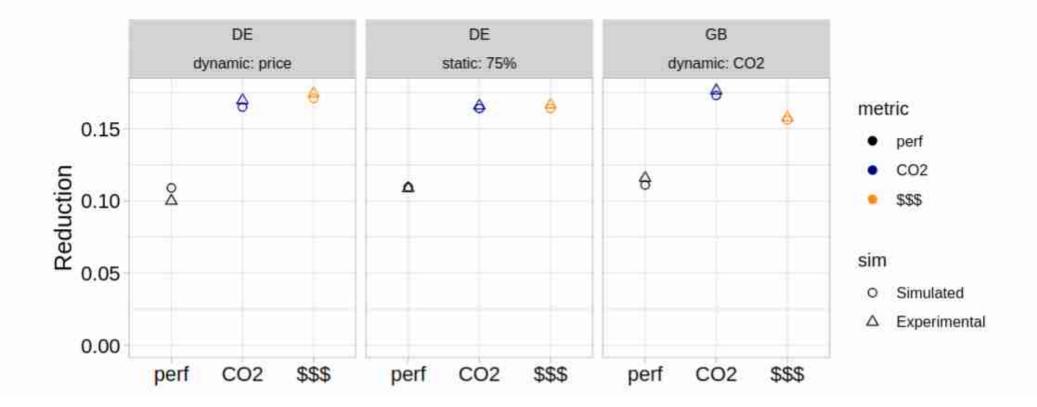
¹Computational Molecular Evolution group, HITS gGmbH, Heidelberg, Germany
²Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
³Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany

https://github.com/amkozlov/eco-freq

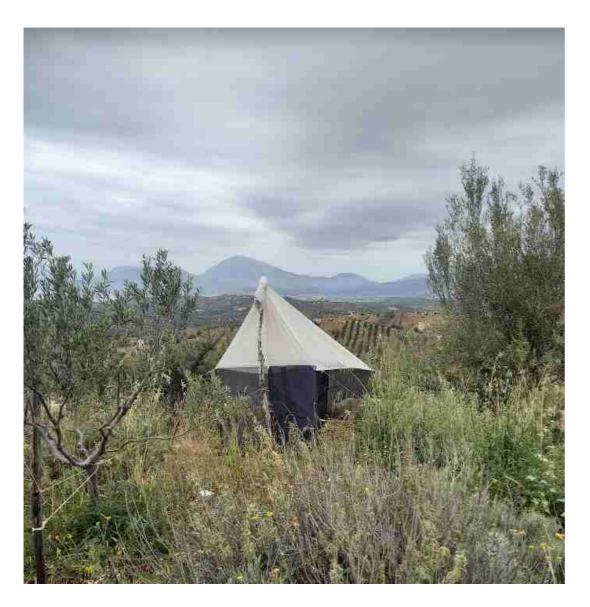
EcoFreq



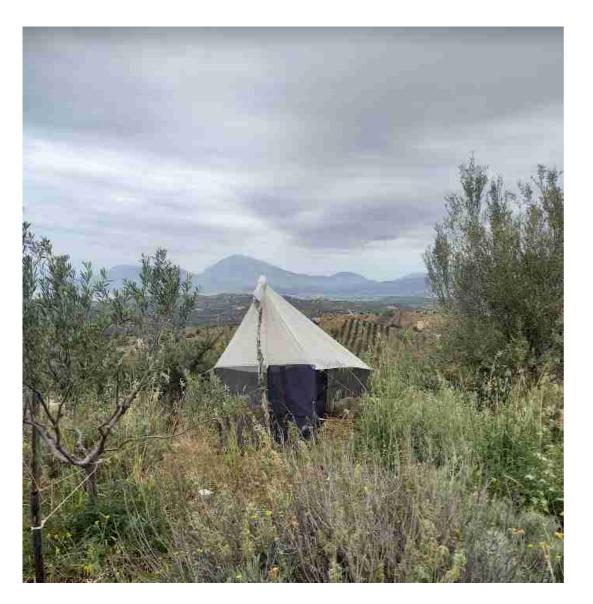
EcoFreq



Biological Field Work



Biological Field Work



Work on designing improved insect barcode analysis pipelines

Gene Tree Species Tree Reconciliation

- There are other phenomena that complicate evolution
 - Gene loss
 - Gene transfer
 - Gene duplication
 - \rightarrow gene tree \neq species tree
- Infer & correct trees under a joint likelihood model comprising the phylogenetic likelihood and a reconciliation likelihood model

GeneRax

• First full and efficient Maximum Likelihood implementation to infer gene family trees using a given rooted species tree under a joint phylogenetic & reconciliation likelihood model

GeneRax: A Tool for Species-Tree-Aware Maximum Likelihood-Based Gene Family Tree Inference under Gene Duplication, Transfer, and Loss 👌

Benoit Morel ➡, Alexey M Kozlov, Alexandros Stamatakis, Gergely J Szöllősi

Molecular Biology and Evolution, Volume 37, Issue 9, September 2020, Pages 2763–2774, https://doi.org/10.1093/molbev/msaa141 **Published:** 05 June 2020

• **Goal:** Simultaneously infer the gene family trees **and** the species tree under a joint phylogenetic/reconciliation likelihood model

JOURNAL ARTICLE

SpeciesRax: A Tool for Maximum Likelihood Species Tree Inference from Gene Family Trees under Duplication, Transfer, and Loss d

Benoit Morel 🕿, Paul Schade, Sarah Lutteropp, Tom A Williams, Gergely J Szöllősi, Alexandros Stamatakis

Molecular Biology and Evolution, Volume 39, Issue 2, February 2022, msab365, https://doi.org/10.1093/molbev/msab365 Published: 11 January 2022

AleRax

- Uses concept of amalgamated likelihoods → requires posterior per-gene tree set as input :-(
- https://github.com/BenoitMorel/AleRax

New Results

A Follow this preprint

AleRax: A tool for gene and species tree co-estimation and reconciliation under a probabilistic model of gene duplication, transfer, and loss

Benoit Morel, Tom A. Williams, Alexandros Stamatakis, Gergely J. Szöllősi doi: https://doi.org/10.1101/2023.10.06.561091

Software Quality Assessment

 SoftWipe tool for automatic scientific software quality assessment (C and C++)

Article Open Access Published: 11 May 2021

The SoftWipe tool and benchmark for assessing coding standards adherence of scientific software

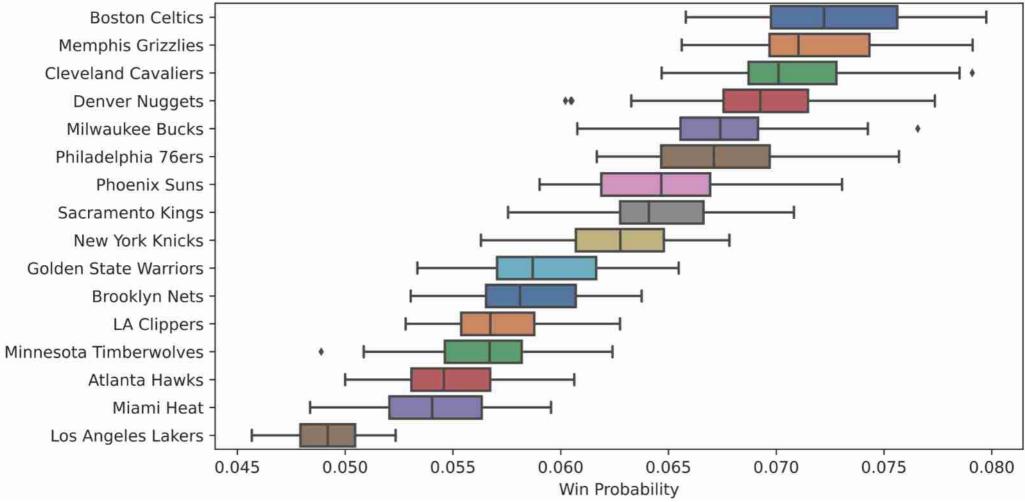
Adrian Zapletal, Dimitri Höhler, Carsten Sinz & Alexandros Stamatakis 🖂

Scientific Reports 11, Article number: 10015 (2021) Cite this article

4270 Accesses | 1 Citations | 115 Altmetric | Metrics

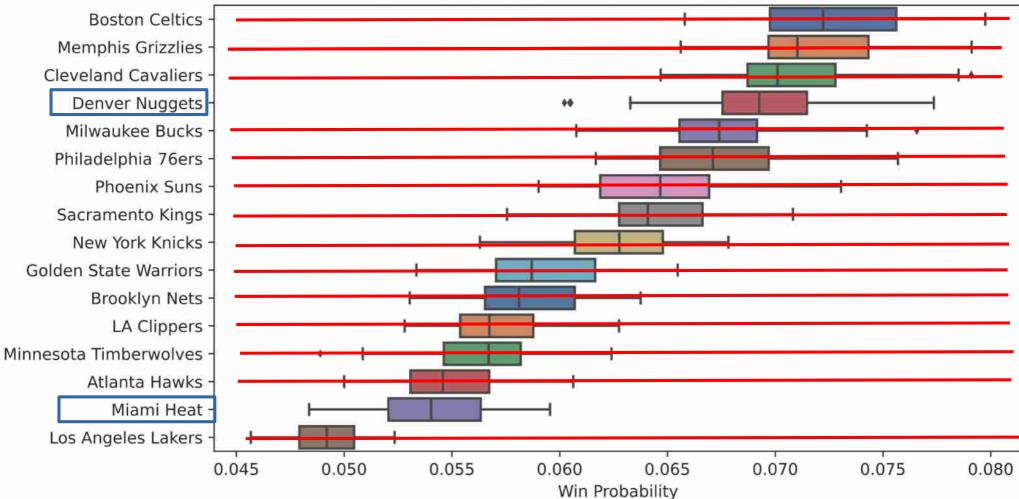
Tournament Prediction

Winning Team Prediction for the NBA 2023 Playoff

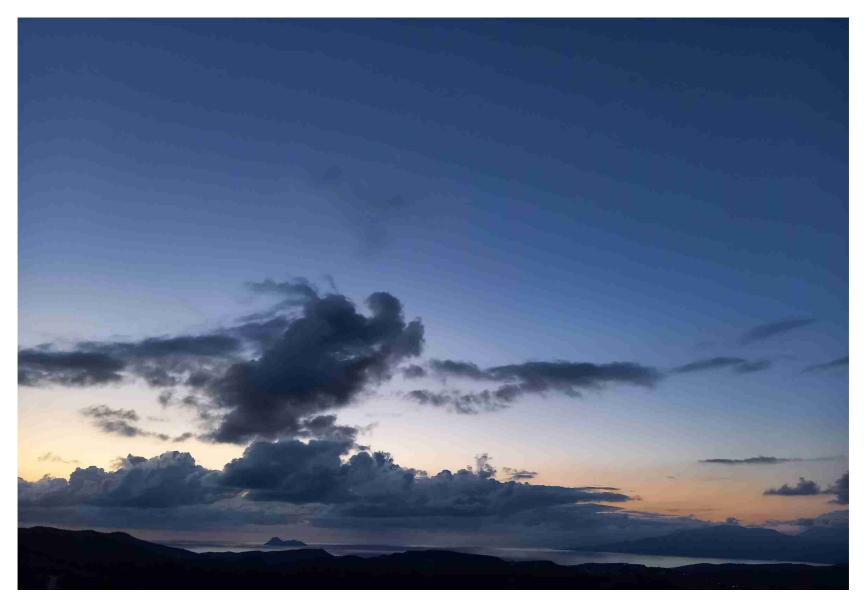


Tournament Prediction

Winning Team Prediction for the NBA 2023 Playoff

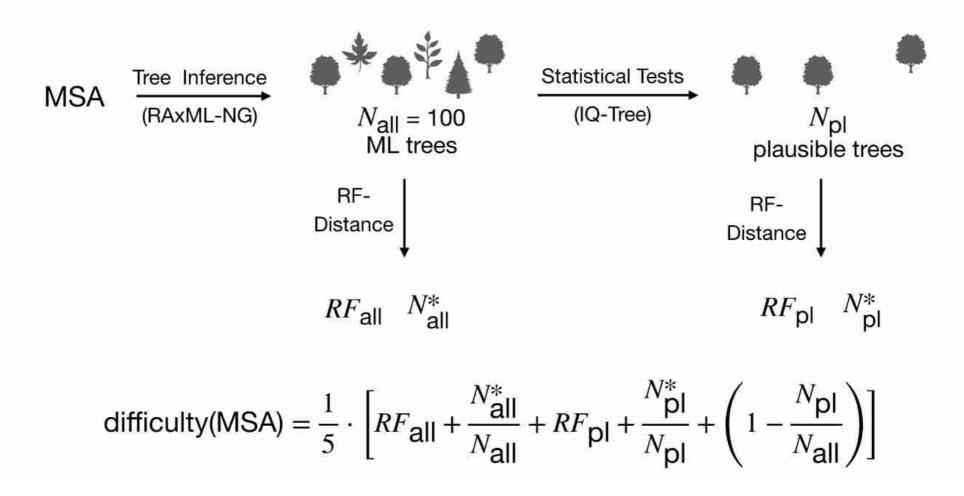


Thank you for your attention



Listaros village, Crete

Definition of Difficulty



Prediction Features

• Eight Features

- 4 MSA attributes
 - Sites-over-taxa
 - patterns-over-taxa
 - % gaps
 - % invariant sites
- 2 MSA information metrics
 - Shannon entropy
 - Bollback multinomial test statistic
- 2 Parsimony-tree-based features
 - Infer 100 parsimony trees
 - \rightarrow average RF-Distance
 - \rightarrow % unique topologies

Distances between trees

