## Phylogenetic Inference

Alexandros Stamatakis ${ }^{1,2,3}$<br>1. Institute of Computer Science, Foundation for Research and Technology - Hellas<br>2. Heidelberg Institute for Theoretical Studies<br>3. Institute of Theoretical Informatics, Karlsruhe Institute of Technology<br>www.biocomp.gr (Crete lab)<br>www.exelixis-lab.org (Heidelberg lab)

## Plan for Today

- Phylogenetic Inference
- Phylogenetic scoring criteria
- Phylogenetic search algorithms


## How many unrooted 4-taxon trees exist?



## How many rooted 4-taxon trees exist?



## Tree Counts

- Unrooted binary trees
- 4 taxa $\rightarrow 3$ distinct trees
- A tree with $n$ taxa has $n-2$ inner nodes
- And 2n-3 branches
- Rooted binary trees
- 4 taxa $\rightarrow 3$ unrooted trees * 5 branches each (rooting points) $=15$ trees
- $n$-1 inner nodes
- $2 n-2$ branches


## The number of trees

3 taxa $=1$ tree

## The number of trees



4 taxa: 3 trees
u: \# trees of size 4-1 := 1
v : \# branches in a tree of size 4-1 := 3
Number of unrooted binary trees with 4 taxa: $u$ * $v=3$

## The number of trees



5 taxa: 15 trees
$\mathrm{u}=3$
$v=5$
Number of unrooted trees with 5 taxa: 3 * $5=15$

## The number of trees



## The number of trees explodes!



## Equation for the number of unrooted trees

- Simple proof via induction

$$
\prod_{i=3}^{m}(2 i-5)
$$

- The number of rooted trees for $n$ taxa simply is the number of unrooted trees for $n+1$ taxa
- The additional $\left(n+1^{\text {th }}\right)$ taxon represents all possible rootings for all unrooted trees with $n$ taxa


## \# trees with 2000 tips

stamatak@exelixis:~/Desktop/GIT/TreeCounter\$ ./treeCounter -n 2000

GNU GPL tree number calculator released June 2011 by Alexandros Stamatakis




































 350341796875

## Scoring Trees

- Now we know how many unrooted candidate trees there exist for $n$ taxa
- How do we chose among them?
$\rightarrow$ we need some scoring criterion $f()$ to evaluate them
$\rightarrow$ finding the optimal tree under most of these criteria is NP-Hard



## Scoring Criteria and Tree Inference Algorithms

## Building Trees

- We distinguish between
- Distance-based methods
$\rightarrow$ use MSA to compute a matrix of pair-wise distances
$\rightarrow$ build a tree using these distances
$\rightarrow$ Heuristics (essentially hierarchical clustering methods)
$\rightarrow$ Neighbor Joining: NJ
$\rightarrow$ Unweighted Pair Group Method with Arithmetic Mean: UPGMA
$\rightarrow$ least-squares method: explicit optimality criterion
- Character-based methods
$\rightarrow$ optimality criteria $f()$ operate directly on the MSA \& tree
$\rightarrow$ parsimony
$\rightarrow$ maximum likelihood
$\rightarrow$ Bayesian inference

Less accurate, but faster

Slow, but more accurate
$\rightarrow$ take the current tree topology \& MSA to calculate a score
$\rightarrow$ the score tells us how well the MSA data fits the tree

## Building Trees

- We distinguish between
- Distance-based methods
$\rightarrow$ use MSA to compute a matrix of pair-wise distances
$\rightarrow$ build a tree using these distances
$\rightarrow$ Heuristics (essentially hierarchical clustering methods)
$\rightarrow$ Neighbor Joining: NJ
$\rightarrow$ Unweighted Pair Group Method with Arithmetic Mean: UPGMA
$\rightarrow$ least-squares method: explicit optimality criterion
- Character-based methods
$\rightarrow$ optimality criteria $f($ ) operate directly on the MSA $\rightarrow$ parsimony
$\rightarrow$ maximum likelihood
$\rightarrow$ Bayesian inference
Memory-intensive!
$\rightarrow$ take the current tree topology \& MSA to calculate a score
$\rightarrow$ the score tells us how well the MSA data fits the tree


## NP-Hardness

- Because of the super-exponential increase in the number of possible trees for $n$ taxa ...
- all interesting optimality criteria on trees are NP-hard:
- Least squares
- Parsimony $\rightarrow$ discrete criterion
- Likelihood $\rightarrow$ statistical criterion
- Bayesian $\rightarrow$ integrate likelihood over entire tree space


## Search Space



## Let's start with distance based methods/heuristics

## Neighbor Joining $\rightarrow$ Principle



Given a kind of distance matrix $D_{i, j}$ where $i, j=1 . . .4$

## Neighbor Joining $\rightarrow$ Principle


min

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 . . .4$
Find minimum and merge taxa

## Neighbor Joining $\rightarrow$ Principle


min

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 \ldots 4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum

## Neighbor Joining $\rightarrow$ Principle


min

Given a kind of distance matrix $D_{i, j}$ where $i, j=1 \ldots 4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum and merge taxa

## Neighbor Joining $\rightarrow$ Principle



Given a kind of distance matrix $D_{i, j}$ where $i, j=1 . . .4$
Find minimum and merge taxa
Compute a new distance matrix of size $n-1=3$
Find minimum and merge taxa
Etc.
Space complexity: $O\left(n^{2}\right)$
Time complexity: $O\left(n^{3}\right)$
Key question: how do we compute distance between $X$ and $A$ or $X$ and $B$ respectively $\rightarrow$ for progressive alignment we may align the profile of $X$ with all remaining sequences

## Neighbor Joining Algorithm

- For each tip compute

$$
u_{i}=\Sigma_{j} D_{i j} /(n-2)
$$

$\rightarrow$ this is in principle the average distance to all other tips
$\rightarrow$ the denominator is $n-2$ instead of $n$, see below why

- Find the pair of tips, $(i, j)$ for which $D_{i j}-u_{i}-u_{j}$ is minimal
- Connect the tips (i,j) to build a new ancestral node $X$
- The branch lengths from the ancestral node $X$ to $i$ and $j$ are:

$$
\begin{aligned}
& b_{i}=0.5 D_{i j}+0.5\left(u_{i}-u_{j}\right) \\
& b_{j}=0.5 D_{i j}+0.5\left(u_{j}-u_{i}\right)
\end{aligned}
$$

- Update the distance matrix:
$\rightarrow$ Compute distance between the new node $X$ and each remaining tip as follows:

$$
D_{i j, k}=\left(D_{i k}+D_{j k}-D_{i j}\right) / 2
$$

- Replace tips $i$ and $j$ by the new node $X$ which is now treated as a tip
- Repeat until only two nodes remain
$\rightarrow$ connect the remaining two nodes with each other


## The UPGMA algorithm

- Usually introduced before Neighbor Joining $N J \rightarrow$ it is simpler and older
- UPGMA is practically not used any more today for phylogeny reconstruction, but it is used for progressive multiple sequence alignment (see MUSCLE algorithm)
- In contrast to NJ it produces ultrametric trees!
- It produces rooted trees
- UPGMA stands for: Unweighted Pair Group Method with Arithmetic Mean
- Like NJ it uses a distance matrix $D$ for clustering/joining nodes
- UPGMA can be used if we know that we have an ultrametric tree!
$\rightarrow$ this is usually not the case!


## UPGMA example

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| A |  | 0.4 | 0.6 | 0.6 |
| B |  |  | 0.6 | 0.6 |
| C |  |  |  | 0.2 |
| D |  |  |  |  |

We will first walk through the algorithm and then look at the formal description!

## UPGMA example

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| A |  | 0.4 | 0.6 | 0.6 |
| B |  |  | 0.6 | 0.6 |
| C |  |  |  | 0.2 |
| D |  |  |  |  |

## UPGMA example

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| A |  | 0.4 | 0.6 | 0.6 |
| B |  |  | 0.6 | 0.6 |
| C |  |  |  | 0.2 |
| D |  |  |  |  |



## UPGMA example

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| A |  | 0.4 | 0.6 | 0.6 |
| B |  |  | 0.6 | 0.6 |
| C |  |  |  | 0.2 |
| D |  |  |  |  |



## UPGMA example

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| A |  | 0.4 | 0.6 | 0.6 |
| B |  |  | 0.6 | 0.6 |
| C |  |  |  | 0.2 |
| D |  |  |  |  |



## UPGMA example

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| A |  | 0.4 | 0.6 | 0.6 |
| B |  |  | 0.6 | 0.6 |
| C |  |  |  | 0.2 |
| D |  |  |  |  |

$D[A][(C, D)]=1 / 2 * 0.6+1 / 2 * 0.6$
C D
$D[B][(C, D)]=1 / 2 * 0.6+1 / 2 * 0.6$

## UPGMA example

|  | A | B | (C,D) |
| :--- | :--- | :--- | :--- |
| A |  | 0.4 | 0.6 |
| B |  |  | 0.6 |
| (C, D) |  |  |  |



## UPGMA example

|  | A | B | (C,D) |
| :--- | :---: | :---: | :--- |
| A |  | 0.4 | 0.6 |
| B |  |  | 0.6 |
| (C, D) |  |  |  |



## UPGMA example



## UPGMA example


$D[A, B][C, D]=1 / 2 * 0.6+1 / 2 * 0.6$

## UPGMA example

|  | $(\mathrm{A}, \mathrm{B})$ | $(\mathrm{C}, \mathrm{D})$ |
| :--- | :--- | :--- |
| $(\mathrm{A}, \mathrm{B})$ |  | 0.6 |
| $(\mathrm{C}, \mathrm{D})$ |  |  |



## UPGMA example

|  | $(\mathrm{A}, \mathrm{B})$ | $(\mathrm{C}, \mathrm{D})$ |
| :--- | :--- | :--- |
| $(\mathrm{A}, \mathrm{B})$ | 0.6 |  |
| $(\mathrm{C}, \mathrm{D})$ |  |  |



## UPGMA example



## UPGMA example



## UPGMA Formal description

- Find the minimum $D[i][j]$
- Merge $i$ and $j \rightarrow(i, j)$
- This new group has $n_{(i, j)}$ members, where $n_{(i, j)}:=n_{i}+n_{j}$
- Connect $i$ and $j$ to form a new node ( $i, j$ )
- Assign the two branches connecting $i \rightarrow(i, j)$ and $j \rightarrow(i, j)$ the length $D[i][j] / 2$
- Update the distances between ( $i, j, j$ and all $k$, where $k \neq i$ and $k \neq j$ via $D[(i, j)][k]=\left(n_{j} /\left(n_{i}+n_{j}\right)\right)$
* $D[i][k]+\left(n_{j} /\left(n_{i}+n_{j}\right)\right)$ * $D[j][k]$
- Naive implementation: $O\left(n^{3}\right) \rightarrow$ search for minimum in each instance of matrix $D$
- Maintain a list of per-column (or per-row) minima
$\rightarrow$ update list $O(n)$
$\rightarrow$ look for minimum $O(n)$
$\rightarrow O\left(n^{2}\right)$
- In contrast to NJ we don't need to update the entire matrix each time, thus only $O\left(n^{2}\right)$


## UPGMA on non-ultrametric trees

- Can yield misleading results
- Most trees are not ultrametric $\rightarrow$ do not have equal evolutionary rates among all lineages



## UPGMA on non-ultrametric trees

- Can yield misleading results
- Most trees are not ultrametric $\rightarrow$ do not have equal



## UPGMA and NJ

- Ad hoc heuristics
- Good for clustering any type of data on which you can define a reasonable distance
- Now let us look at explicit criteria
$\rightarrow$ given a specific tree tolopology they yield a score


## Let's start with a distance-based criterion

## Least Squares



## Least Squares



## Least Squares

Given distance matrix D

|  | H | C | G |
| :--- | :--- | :--- | :--- |
| H |  | 0.0965 | 0.1140 |
| C |  | 0.1849 |  |
| G |  |  |  |
| O |  |  |  |



Orangutang

$$
\begin{aligned}
& d[\mathrm{H}][\mathrm{C}]=t 1+t 2 \\
& d[\mathrm{H}][\mathrm{G}]=t 1+t 0+t 3 \\
& d[\mathrm{H}][\mathrm{O}]=t 1+t 0+t 4 \\
& d[C][\mathrm{G}]=t 2+t 0+t 3 \\
& d[C][\mathrm{O}]=t 2+t 0+t 4 \\
& d[G][O]=t 3+t 4
\end{aligned}
$$

## Least Squares

Given distance matrix D

|  | H | C | G |
| :--- | :--- | :--- | :--- |
| H |  | 0.0965 | 0.1140 |
| C |  |  | 0.1180 |
| G |  |  |  |
| O |  |  |  |



Orangutang

Find $t 0, t 1, \ldots, t 4$ such that deviation of $d[i][j]$ from $D[i][j]$ is minimized!
$Q:=(d[H][C]-D[H][C])^{2}+(d[H][G]-D[H][G])^{2}+(d[H][O]$
$-D[H][O])^{2}+(d[C][G]-D[C][G])^{2}+(d[C][O]-D[C][O])^{2}+$

$$
\begin{aligned}
& d[\mathrm{H}][\mathrm{C}]=t 1+t 2 \\
& d[\mathrm{H}][\mathrm{G}]=t 1+t 0+t 3 \\
& d[\mathrm{H}][\mathrm{O}]=t 1+t 0+t 4 \\
& d[C][\mathrm{G}]=t 2+t 0+t 3 \\
& d[C][\mathrm{O}]=t 2+t 0+t 4 \\
& d[\mathrm{G}][\mathrm{O}]=t 3+t 4
\end{aligned}
$$

$$
(d[G][O]-D[G][O])^{2}
$$

## Least Squares Example

| tree | t0 | t1 | t2 | t3 | t4 | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $((\mathrm{H}, \mathrm{C}), \mathrm{G}, \mathrm{O})$ | 0.008840 | 0.043266 | 0.053280 | 0.058908 | 0.135795 | 0.000035 |
| $(\mathrm{H}, \mathrm{G}), \mathrm{C}, \mathrm{O})$ | 0.000000 | 0.046212 | 0.056227 | 0.061854 | 0.138742 | 0.000140 |
| $((\mathrm{H}, \mathrm{O}), \mathrm{C}, \mathrm{G})$ | As above | - | - | - | - | - |

## Least Squares Example

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Star tree |  |  |  |

## Least Squares Optimization

- Given a fixed, fully binary, unrooted tree $T$ with $n$ taxa
- Given a pair-wise distance matrix $D$
- Assign branch lengths $t_{1}, \ldots, t_{2 n-3}$ to the tree such that:
the sum of the squared differences between the pair-wise patristic (tree-based!) distances $d_{i j}$ and the plain pair-wise distances $D_{i j}$ is minimized
- In other words:
$Q=\Sigma_{i<j}\left(D_{i j}-d_{i j}\right)^{2} \rightarrow$ find an assignment $t_{1}, \ldots, t_{2 n-3}$ to the tree such that $Q$ is minimized
$Q$ can be minimized by taking the derivative and solving a system of linear equations in $O\left(n^{3}\right)$
Minimization methods for $Q$ that take into account the tree-like structure run in $O\left(n^{2}\right)$ or even $O(n)$
- Then, also find that tree topology $T$ that minimizes $Q$
- Finding the minimal least squares tree is NP-hard
W.H.E. Day "Computational Complexity of Inferring Phylogenies from dissimilarity matrices", Bulletin of Mathematical Biology 49: 461-467, 1986.


## Least Squares

- NP-hard because of tree search problem
- Scoring a single tree takes time between $O(n)$ to $O\left(n^{3}\right)$
- There also exist weighted versions:

$$
\begin{aligned}
& Q=\Sigma_{i<j} w_{i j}\left(D_{i j}-d_{i j}\right)^{2} \\
& \text { where } w_{i j}:=1 / D_{i j} \text { or } w_{i j}:=1 / D_{i j}{ }^{2}
\end{aligned}
$$

- We will see how to search for trees a bit later-on
- Make sure you understand the difference between
- Scoring a single tree
- Searching for the tree with the best score


## Distances

- A preview of the next lecture
- We need to accommodate multiple substitutions in the evolutionary history of sequences


Hidden mutations

## Distances

- A preview of the next lecture
- We need to accommodate multiple substitutions in the evolutionary history of sequences



## Minimum Evolution Method

- Similar to least squares
- Explicit Criterion $\rightarrow$ minimize total branch length (tree length) of the reconstructed tree
- Branch lengths are obtained using least-squares method $\rightarrow$ same time complexity
- Instead of searching for the tree that minimizes the squared difference between $D[i][j]$ and $d[i][j]$ that is denoted by $Q$ we search for the tree where $t 0+t 1+t 2+t 3+$ $t 4$ is minimized

| tree | t0 | t1 | t2 | t3 | t4 | Q | Tree length |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $((\mathrm{H}, \mathrm{C}), \mathrm{G}, \mathrm{O})$ | 0.008840 | 0.043266 | 0.053280 | 0.058908 | 0.135795 | 0.000035 | 0.240741 |
| $(\mathrm{H}, \mathrm{G}), \mathrm{C}, \mathrm{O})$ | 0.000000 | 0.046212 | 0.056227 | 0.061854 | 0.138742 | 0.000140 | 0.303035 |
| $(\mathrm{H}, \mathrm{O}), \mathrm{C}, \mathrm{G})$ | As above | - | - | - | - | - |  |

## Distance-based Methods

- Clustering Algorithms/Heuristics
- Neighbor Joining
$\rightarrow$ Heuristic for Minimum Evolution Method
- UPGMA
- Explicit criteria
- least squares
- minimum evolution
- All depend on the accuracy of the pair-wise distance matrix $D$
- The distance matrix needs to be an exact reflection of the tree


## Character-based Methods

- Parsimony
- Maximum Likelihood
- Bayesian Inference


## The Parsimony Criterion

- Directly operates on the MSA
- Find the tree that explains the data with the least amount of mutations
- Questions:
- How do we count the least amount of mutations on a given tree?
$\rightarrow$ dynamic programming algorithm
- How do we find the tree topology that requires the least amount of mutations
$\rightarrow$ requires a tree search!
$\rightarrow$ remember the number of trees!
$\rightarrow$ this is also NP-hard!


## Parsimony

## MSA

S1: AAGG
S2: AAA-
S3: AGAG
S4: TTAT


## Parsimony

## MSA

S1: AAGG
S2: AAA-
S3: AGAG
S4: TTAT


## Parsimony

Find an assignment of sequences to inner nodes such that the number of mutations on the tree is minimized


## Parsimony

This is somewhat similar to the tree alignment problem, but here, we are given an alignment!


## Parsimony



## Parsimony

Parsimony Score of this tree $=5$


## Parsimony

Parsimony Score of this tree $=5$
This is also the minimum score for this tree.


## Parsimony

## Parsimony Score of this tree $=5$



## Parsimony



## Parsimony



## Parsimony



## Parsimony



## Parsimony

Post-order traversal to compute inner states


## Parsimony

Compute scores on a site-per-site basis
$\rightarrow$ we assume that sites evolve independently!


## Parsimony



## Parsimony



## Parsimony

Intersection of sets of possible states at ancestor
If intersection not empty
$\rightarrow$ no mutation

## Parsimony

Intersection empty
$\rightarrow$ count one mutation


## Parsimony

## +1

Intersection empty
$\rightarrow$ count one mutation


## Parsimony

1
Ancestral state: union!
$\rightarrow$ key trick, defer decision Whether this is a T or A to a later point!


## Parsimony

1 Inter

## Parsimony

1 Inter

## Parsimony

1

Virtual root


## Parsimony

$1+?$

Virtual root


## Parsimony

$1+2$

Virtual root



## Parsimony

$1+2+?$

Virtual root


## Parsimony

$1+2+1$

Virtual root


## Parsimony

$1+2+1$

Virtual root



## Parsimony

## $1+2+1$



## Parsimony

## $1+2+1$



## Parsimony

## $1+2+1+?$



## Parsimony

## $1+2+1+1$



## Parsimony

## $1+2+1+1$



## Parsimony

## $1+2+1+1=5$



## Exercise: What's the parsimony score of this tree?



## Exercise: What's the parsimony score of this tree?

$$
1+2+2+1=6
$$

Virtual root


## Parsimony

- Time complexity to score one tree

MSA with $n$ taxa and $m$ sites
$\rightarrow(n-2) * m$ calculations; $n-2$ is the number of inner nodes of a tree with $n$ taxa
$\rightarrow O(n m)$, but the constant hidden in $O_{( }$is very small

- Space complexity DNA data
$\rightarrow$ alignment: $n$ * $m$ * 4 bits
$\rightarrow$ ancestral nodes: $(n-2) * m * 4$ bits
$\rightarrow$ score counter: ( $n-2$ ) * 32 bits
$\rightarrow$ space complexity $O(n m)$, but the constant hidden in $O_{( }$is very small
- Maximum Likelihood: same time \& space complexity, but constants much, much larger!


## Parsimony Implementation Notes

- Intersections and Unions can be implemented efficiently at the bit-level
- 4 bits for one DNA character (remember, ambiguous character encoding)
- Plain implementation: 32 bits
- SSE3 vector intrinsics: 128 bits
- AVX vector intrinsics: 256 bits
- Parsimonator program (www.exelixis-lab.org/software.html)
$\rightarrow$ uses SSE3 and AVX intrinsics
$\rightarrow$ I will show a demo now
$\rightarrow$ Implements simple search algorithm
$\rightarrow$ probably fastest available open-source parsimony implementation


## Parsimony Implementation Notes

- Without going into the details:
- In the parsimonator implementation we need to compute a socalled population count (popcount) that computes the number of bits (\# mutations) that are set to 1 in a 32-, 128-, or 256-bit word
- popcount is a very important operation
- There are various fancy bit-twisting implementations for fast popcounts
- In fact, this operation is so important that modern x86 architectures have a dedicated HW-based popcount
- You can use it in C code via __builtin_popcount (x)


## Parsimony Implementation Notes

- Why did we write parsimonator?
- A paper was published that claimed to have achieved a FPGA-based acceleration of the parsimony function of up to factor 10,000
- Remember: the speedup is defined as $T(1) / T(N)$, where $T(1)$ is the fastest available sequential implementation/algorithm!
- Compared to Parsimonator (AVX version), the corresponding FPGA design achieved a speedup of up to 10, only!
- N. Alachiotis, A. Stamatakis: "FPGA Acceleration of the Phylogenetic Parsimony Kernel?", FPL 2011.


## How do we search for "good" trees under any criterion?

## Search Space



## Tree Search Algorithms

- How do we obtain an initial starting tree with $n$ taxa $\rightarrow$ comprehensive tree
$\rightarrow$ NJ or UPGMA tree
$\rightarrow$ random tree
$\rightarrow$ stepwise addition algorithm
- How do we change such a comprehensive tree to improve its score?
Scores can be improved with optimality criteria: least squares, minimum evolution, parsimony, maximum
likelihood


## Building a Random Tree

Seq0<br>Seq1<br>Seq2<br>Seq3<br>Seq4

## Building a Random Tree



## Building a Random Tree



## Building a Random Tree



## Randomized Stepwise Addition Order Algorithm

Seq0<br>Seq1<br>Seq2<br>Seq3<br>Seq4

# Randmoized Stepwise Addition Order Algorithm 



Seq4 Seq1

Seq3

## Randomized Stepwise Addition Order Algorithm



# Randomized Stepwise Addition Order Algorithm 




# Randomized Stepwise Addition Order Algorithm 



Seq4 Seq1

Seq2
Seq3

## Randomized Stepwise Addition Order Algorithm



# Randomized Stepwise Addition Order Algorithm 



## Randomized Stepwise Addition Order Algorithm



## Why are distinct Starting Trees useful?



## Why are distinct Starting Trees useful?



## The number of trees



# Random versus Reasonable Starting trees 



## Search Strategies

- Given a comprehensive tree
- Apply topological alteration mechanisms in some order to improve the score, for instance, via
- Hill-climbing
- Simulated annealing
- Some other technique
$\rightarrow$ design of ad hoc heuristics
- The three basic moves are:
- NNI: Nearest Neighbor Interchange
- SPR: Subtree Pruning and Re-Grafting
- TBR: Tree Bisection and Reconnection


## NNI



## NNI



## NNI



## NNI



## SPR



## TBR



## TBR



## TBR



## TBR



## TBR



## Question

- How could one design a search algorithm for the least squares criterion given a function $f()$ and a distance matrix $D$ to compute the least squares score on a given tree?


## The Parsimonator Algorithm

- Build a randomized stepwise addition order parsimony tree
- Apply SPR moves to all subtrees of the current (comprehensive) tree with a rearrangement radius of 20
- If the rearrangement of a subtree yields an improved parsimony score, keep it immediately
$\rightarrow$ this is somewhat greedy as opposed to a steepest ascent hill climbing algorithm
- Continue applying SPR moves with a radius of 20 to all subtrees until no tree with a better parsimony score can be found
- There are much more sophisticated algorithms available
$\rightarrow$ TNT tool by Pablo Goloboff
- Keep in mind that parsimony returns discrete scores, that is, there may be many equally parsimonious trees among which we can not distinguish!


## Parsimony \& Long Branch Attraction

- Because parsimony tries to minimize the number of mutations it faces some problems on trees with long branches



## Parsimony \& Long Branch Attraction

- Settings under which parsimony recovers the wrong tree are also called "the Felsenstein Zone" after Joe Felsenstein who has made numerous very important contributions to the field, e.g.
- The Maximum Likelihood model
- The Bootstrapping procedure
- If you are interested in statistics, there are some on-line courses by Joe at http://evolution.gs.washington.edu/courses.html



## On-line Resources

- https://cme.h-its.org/exelixis//web/teaching/slides.html
- At the above page you will find all slides of my regular lecture on "Introduction to Bioinformtics for Computer Scientists" including many more advanced topics in the area of phylogenetic inference
- You will also find links to youtube recordings of these lectures there!

