

1

Phylogenetic Inference

Alexandros Stamatakis1,2,3

1. Institute of Computer Science, Foundation for Research and Technology - Hellas
2. Heidelberg Institute for Theoretical Studies

3. Institute of Theoretical Informatics, Karlsruhe Institute of Technology
www.biocomp.gr (Crete lab)

www.exelixis-lab.org (Heidelberg lab)

http://www.biocomp.gr/
http://www.exelixis-lab.org/

2

Plan for Today

● Phylogenetic Inference
● Phylogenetic scoring criteria
● Phylogenetic search algorithms

3

How many unrooted 4-taxon trees
exist?

A

D

B

C

A

C

B

D

A

B

C

D

4

How many rooted 4-taxon trees
exist?

A

D

B

C

A

C

B

D

A

B

C

D

5

Tree Counts

● Unrooted binary trees
● 4 taxa → 3 distinct trees
● A tree with n taxa has n-2 inner nodes
● And 2n-3 branches

● Rooted binary trees
● 4 taxa → 3 unrooted trees * 5 branches each

(rooting points) = 15 trees
● n-1 inner nodes
● 2n-2 branches

6

The number of trees

3 taxa = 1 tree

7

The number of trees

4 taxa: 3 trees
u: # trees of size 4-1 := 1
v: # branches in a tree of size 4-1 := 3
Number of unrooted binary trees with 4 taxa: u * v = 3

8

The number of trees

5 taxa: 15 trees
u = 3
v = 5
Number of unrooted trees with 5 taxa: 3 * 5 = 15

9

The number of trees

6 taxa: 105 trees
u = 15
v = 7
u * v = 105

10

The number of trees explodes!

BANG !

11

Equation for the number of unrooted
trees

● Simple proof via induction

● The number of rooted trees for n taxa simply is
the number of unrooted trees for n+1 taxa

● The additional (n+1th) taxon represents all
possible rootings for all unrooted trees with n
taxa

12

trees with 2000 tips

13

Scoring Trees

● Now we know how many unrooted candidate trees there exist for
n taxa

● How do we chose among them?

→ we need some scoring criterion f() to evaluate them

→ finding the optimal tree under most of these criteria is NP-Hard

A

D

B

C

A

C

B

D

A

B

C

D
f() f() f()

1.0 2.0 3.0

A: ACGG
B: AGGG
C: GA-A
D: AAGG

A: ACGG
B: AGGG
C: GA-A
D: AAGG

A: ACGG
B: AGGG
C: GA-A
D: AAGG

14

Scoring Criteria and Tree Inference
Algorithms

15

Building Trees

● We distinguish between
● Distance-based methods

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods

→ optimality criteria f() operate directly on the MSA & tree

→ parsimony

→ maximum likelihood

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more
accurate

16

Building Trees

● We distinguish between
● Distance-based methods

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods

→ optimality criteria f() operate directly on the MSA

→ parsimony

→ maximum likelihood

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more
accurate

Memory-intensive!

17

NP-Hardness

● Because of the super-exponential increase in the number of
possible trees for n taxa ...

● all interesting optimality criteria on trees are NP-hard:

● Least squares
● Parsimony → discrete criterion
● Likelihood → statistical criterion
● Bayesian → integrate likelihood over entire tree space

18

Search Space

good

bad → random trees

Search Space

Best tree according to f()

19

Let’s start with distance based
methods/heuristics

20

Neighbor Joining → Principle

A B C D

A

D

Given a kind of distance matrix Di,j where i,j=1...4

C

B

21

Neighbor Joining → Principle

A B C D

A

D

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa

C

B

C D

min

X

22

Neighbor Joining → Principle

A B X

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3
Find minimum

X

B

C D

min

X

23

Neighbor Joining → Principle

A B X

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3
Find minimum and merge taxa

X

B

C D

min

X

A B

Y

24

Neighbor Joining → Principle

A B X

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3
Find minimum and merge taxa
Etc.
Space complexity: O(n2)
Time complexity: O(n3)
Key question: how do we compute distance between X and A or X and B respectively
→ for progressive alignment we may align the profile of X with all remaining sequences

X

B

C D

min

X

A B

Y

Neighbor Joining Algorithm
● For each tip compute

ui = j Dij/(n-2)

→ this is in principle the average distance to all other tips

→ the denominator is n-2 instead of n, see below why

● Find the pair of tips, (i, j) for which Dij-ui-uj is minimal
● Connect the tips (i,j) to build a new ancestral node X
● The branch lengths from the ancestral node X to i and j are:

bi = 0.5 Dij + 0.5 (ui-uj)

bj = 0.5 Dij + 0.5 (uj-ui)

● Update the distance matrix:
→ Compute distance between the new node X and each remaining tip as follows:

Dij,k = (Dik+Djk-Dij)/2

● Replace tips i and j by the new node X which is now treated as a tip
● Repeat until only two nodes remain

→ connect the remaining two nodes with each other

26

The UPGMA algorithm

● Usually introduced before Neighbor Joining NJ → it is simpler and older
● UPGMA is practically not used any more today for phylogeny

reconstruction, but it is used for progressive multiple sequence
alignment (see MUSCLE algorithm)

● In contrast to NJ it produces ultrametric trees!
● It produces rooted trees
● UPGMA stands for: Unweighted Pair Group Method with Arithmetic

Mean
● Like NJ it uses a distance matrix D for clustering/joining nodes
● UPGMA can be used if we know that we have an ultrametric tree!

→ this is usually not the case!

27

UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

We will first walk through the algorithm
and then look at the formal description!

28

UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

29

UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

C D

0.1 0.1

30

UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

C D

0.1 0.1

Branch length := ½ * D[C][D]

31

UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

C D

0.1 0.1

Branch length := ½ * D[C][D]
Ensures ultrametricity!

32

UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

C D

0.1 0.1

D [A][(C,D)] = ½ * 0.6 + ½ * 0.6
D [B][(C,D)] = ½ * 0.6 + ½ * 0.6

33

UPGMA example

A B (C,D)

A 0.4 0.6

B 0.6

(C, D)

C D

0.1 0.1

34

UPGMA example

A B (C,D)

A 0.4 0.6

B 0.6

(C, D)

C D

0.1 0.1

35

UPGMA example

A B (C,D)

A 0.4 0.6

B 0.6

(C, D)

C D

0.1 0.1

A B

0.2
0.2

36

UPGMA example

A B (C,D)

A 0.4 0.6

B 0.6

(C, D)

C D

0.1 0.1

A B

0.2
0.2

D[A,B][C,D] = ½ * 0.6 + ½ * 0.6

37

UPGMA example

(A,B) (C,D)

(A,B) 0.6

(C,D)

C D

0.1 0.1

A B

0.2
0.2

38

UPGMA example

(A,B) (C,D)

(A,B) 0.6

(C,D)

C D

0.1 0.1

A B

0.2
0.2

39

UPGMA example

(A,B) (C,D)

(A,B) 0.6

(C,D)

C D

0.1 0.1

A B

0.2
0.2

0.1
0.2

40

UPGMA example

(A,B) (C,D)

(A,B) 0.6

(C,D)

C D

0.1 0.1

A B

0.2
0.2

0.1
0.2

0.6

41

UPGMA Formal description

● Find the minimum D[i][j]
● Merge i and j → (i,j)
● This new group has n(i,j) members, where n(i,j) := ni +nj

● Connect i and j to form a new node (i,j)
● Assign the two branches connecting i → (i,j) and j → (i,j) the length D[i][j]/2
● Update the distances between (i,j) and all k, where k ≠ i and k ≠ j via D[(i,j)][k] = (ni/(ni+nj))

* D[i][k] + (nj/(ni+nj)) * D[j][k]

● Naive implementation: O(n3) → search for minimum in each instance of matrix D
● Maintain a list of per-column (or per-row) minima

→ update list O(n)

→ look for minimum O(n)

→ O(n2)
● In contrast to NJ we don't need to update the entire matrix each time, thus only O(n2)

42

UPGMA on non-ultrametric trees

● Can yield misleading results
● Most trees are not ultrametric → do not have equal

evolutionary rates among all lineages

A

B C

D

2 2

13

4 4

10

A B C D

A 0 17 21 27

B 0 12 18

C 0 14

D 0

10.8332.833

2

8
6 6

B C D A

True tree Patristic distance matrix UPGMA tree

root root

43

UPGMA on non-ultrametric trees

● Can yield misleading results
● Most trees are not ultrametric → do not have equal

evolutionary rates among all lineages

A

B C

D

2 2

13

4 4

10

A B C D

A 0 17 21 27

B 0 12 18

C 0 14

D 0

10.8332.833

2

8
6 6

B C D A

True tree Patristic distance matrix UPGMA tree

root root
Imagine a higher
evolutionary pressure!
→ difficult life conditions!

44

UPGMA and NJ

● Ad hoc heuristics
● Good for clustering any type of data on which

you can define a reasonable distance
● Now let us look at explicit criteria

→ given a specific tree tolopology they yield a
score

45

Let’s start with a distance-based
criterion

46

Least Squares

Human

Chimp

Gorilla

Orangutang

t0

t1

t2

t3

t4

47

Least Squares

Human

Chimp

Gorilla

Orangutang

t0

t1

t2

t3

t4

d[H][C] = t1 + t2
d[H][G] = t1 + t0 + t3
d[H][O] = t1 + t0 + t4
d[C][G] = t2 + t0 + t3
d[C][O] = t2 + t0 + t4
d[G][O] = t3 + t4

Patristic distances

48

Least Squares

Human

Chimp

Gorilla

Orangutang

t0

t1

t2

t3

t4

d[H][C] = t1 + t2
d[H][G] = t1 + t0 + t3
d[H][O] = t1 + t0 + t4
d[C][G] = t2 + t0 + t3
d[C][O] = t2 + t0 + t4
d[G][O] = t3 + t4

H C G O

H 0.0965 0.1140 0.1849

C 0.1180 0.2009

G 0.1947

O

Given distance matrix D

49

Least Squares

Human

Chimp

Gorilla

Orangutang

t0

t1

t2

t3

t4

d[H][C] = t1 + t2
d[H][G] = t1 + t0 + t3
d[H][O] = t1 + t0 + t4
d[C][G] = t2 + t0 + t3
d[C][O] = t2 + t0 + t4
d[G][O] = t3 + t4

H C G O

H 0.0965 0.1140 0.1849

C 0.1180 0.2009

G 0.1947

O

Given distance matrix D

Find t0, t1, ..., t4 such that deviation of d[i][j] from D[i][j] is
minimized!

Q := (d[H][C] – D[H][C])2 + (d[H][G] - D[H][G])2 + (d[H][O]
- D[H][O])2 + (d[C][G] - D[C][G])2 + (d[C][O] - D[C][O])2 +
(d[G][O] - D[G][O])2

50

Least Squares Example

tree t0 t1 t2 t3 t4 Q

((H,C),G,O) 0.008840 0.043266 0.053280 0.058908 0.135795 0.000035

((H,G),C,O) 0.000000 0.046212 0.056227 0.061854 0.138742 0.000140

((H,O),C,G) As above - - - - -

51

Least Squares Example

tree t0 t1 t2 t3 t4 Q

((H,C),G,O) 0.008840 0.043266 0.053280 0.058908 0.135795 0.000035

((H,G),C,O) 0.000000 0.046212 0.056227 0.061854 0.138742 0.000140

((H,O),C,G) As above - - - - -

Star tree

H

C

G

O

52

Least Squares Optimization
● Given a fixed, fully binary, unrooted tree T with n taxa

● Given a pair-wise distance matrix D

● Assign branch lengths t1 , ..., t2n-3 to the tree such that:

the sum of the squared differences between the pair-wise patristic (tree-based!)
distances dij and the plain pair-wise distances Dij is minimized

● In other words:

Q = Σi<j (Dij – dij)2 → find an assignment t1 ,..., t2n-3 to the tree such that Q is
minimized

Q can be minimized by taking the derivative and solving a system of linear equations
in O(n3)

Minimization methods for Q that take into account the tree-like structure run in O(n2)
or even O(n)

● Then, also find that tree topology T that minimizes Q

● Finding the minimal least squares tree is NP-hard

W.H.E. Day “Computational Complexity of Inferring Phylogenies from dissimilarity
matrices”, Bulletin of Mathematical Biology 49: 461-467, 1986.

53

Least Squares

● NP-hard because of tree search problem

● Scoring a single tree takes time between O(n) to O(n3)

● There also exist weighted versions:

Q = Σi<j wij(Dij – dij)2

where wij := 1/Dij or wij := 1/Dij2

● We will see how to search for trees a bit later-on

● Make sure you understand the difference between

● Scoring a single tree
● Searching for the tree with the best score

54

Distances

● A preview of the next lecture
● We need to accommodate multiple substitutions

in the evolutionary history of sequences

G A T A G

Sequence 1 Sequence 2 Sequence 3

Hidden mutations

55

Distances

● A preview of the next lecture
● We need to accommodate multiple substitutions

in the evolutionary history of sequences

G A T A G

Sequence 1 Sequence 2 Sequence 3

Simple edit distances will not be sufficient →
we need statistical modes!

56

Minimum Evolution Method

● Similar to least squares
● Explicit Criterion → minimize total branch length (tree length) of the reconstructed

tree
● Branch lengths are obtained using least-squares method → same time complexity
● Instead of searching for the tree that minimizes the squared difference between

D[i][j] and d[i][j] that is denoted by Q we search for the tree where t0 + t1 + t2 + t3 +
t4 is minimized

tree t0 t1 t2 t3 t4 Q Tree length

((H,C),G,O) 0.008840 0.043266 0.053280 0.058908 0.135795 0.000035 0.240741

((H,G),C,O) 0.000000 0.046212 0.056227 0.061854 0.138742 0.000140 0.303035

((H,O),C,G) As above - - - - -

57

Distance-based Methods

● Clustering Algorithms/Heuristics

● Neighbor Joining

→ Heuristic for Minimum Evolution Method
● UPGMA

● Explicit criteria

● least squares
● minimum evolution

● All depend on the accuracy of the pair-wise distance matrix D

● The distance matrix needs to be an exact reflection of the tree

58

Character-based Methods

● Parsimony
● Maximum Likelihood
● Bayesian Inference

59

The Parsimony Criterion

● Directly operates on the MSA

● Find the tree that explains the data with the least amount of mutations

● Questions:

● How do we count the least amount of mutations on a given tree?

→ dynamic programming algorithm
● How do we find the tree topology that requires the least amount of

mutations

→ requires a tree search!

→ remember the number of trees!

→ this is also NP-hard!

60

Parsimony

S1: AAGG
S2: AAA-
S3: AGAG
S4: TTAT

MSA

61

Parsimony

S1: AAGG
S2: AAA-
S3: AGAG
S4: TTAT

MSA

AAGG

AAA-

AGAG

TTAT

62

Parsimony

AAGG

AAA-

AGAG

TTAT

Find an assignment of sequences
to inner nodes such that the number of mutations

on the tree is minimized

63

Parsimony

AAGG

AAA-

AGAG

TTAT

This is somewhat similar to the tree alignment problem,
but here, we are given an alignment!

64

Parsimony

AAGG

AAA-

AGAG

TTAT

What could the inner sequences look like?

65

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

66

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

67

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0

68

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

69

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

70

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

71

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

Parsimony Score of this tree = 5

72

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

Parsimony Score of this tree = 5
This is also the minimum score for
this tree.

73

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

Parsimony Score of this tree = 5

Gaps (also called Indels → Insertions or Deletions) are
treated as so-called undetermined characters, also
frequently denoted as N.
The interpretation is that N could be either A, C, G, or T.

74

Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

So, how do we compute the score?

75

Parsimony

AAGG

AAA-

AGAG

TTAT

Virtual root

76

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

77

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

The score will be the same, regardless of
where we place the root
→ makes computations much easier

Essentially we assume that evolution is
time-reversible, that is, it occurred in the same
way if followed forward or backward in time

For Maximum Likelihood we use a similar concept!

78

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

Post-order traversal to compute inner states

79

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

Compute scores on a site-per-site basis
→ we assume that sites evolve independently!

80

Parsimony

A A AT

Virtual root

81

Parsimony

1000 1000
0001

Virtual root

1000

82

Parsimony

1000 1000
0001

Virtual root

1000

 1000
&1000
 1000

A: 1000

Intersection of sets of
possible states at
ancestor
If intersection not empty
→ no mutation

83

Parsimony

1000 1000
0001

Virtual root

1000

 1000
&0001
 0000A: 1000

Intersection empty
→ count one mutation

84

Parsimony

1000 1000
0001

Virtual root

1000

 1000
&0001
 0000A: 1000

+1
Intersection empty
→ count one mutation

85

Parsimony

1000 1000
0001

Virtual root

1000

 1000
|0001
 1001A: 1000

1 Ancestral state: union!
→ key trick, defer decision
Whether this is a T or A to a
later point!

A or T: 1001

86

Parsimony

1000 1000
0001

Virtual root

1000

 1000
&1001
 1000

A: 1000

1

A or T: 1001

Intersection non-empty,
Overall score for this
Site: 1

87

Parsimony

1000 1000
0001

Virtual root

1000

 1000
&1001
 1000

A: 1000

1

A or T: 1001

Intersection non-empty,
Overall score for this
Site: 1

88

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1

89

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+?

90

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+2

91

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+2+?

92

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+2+1

93

Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+2+1

94

Parsimony

0010 1111 00100001

Virtual root

1+2+1

95

Parsimony

0010 1111 00100001

Virtual root

1+2+1

 0001
&0010
 0000

G: 0010

 0010
&1111
 0010

96

Parsimony

0010 1111 00100001

Virtual root

1+2+1+?

 0001
|0010
 0011

G: 0010

 0010
&1111
 0010

G or T: 0011

97

Parsimony

0010 1111 00100001

Virtual root

1+2+1+1

 0001
|0010
 0011

G: 0010

 0010
&1111
 0010

G or T: 0011

98

Parsimony

0010 1111 00100001

Virtual root

1+2+1+1

 0001
|0010
 0011

G: 0010

 0010
&1111
 0010

G or T: 0011

 0011
&0010
 0010

99

Parsimony

0010 1111 00100001

Virtual root

1+2+1+1= 5

 0001
|0010
 0011

G: 0010

 0010
&1111
 0010

G or T: 0011

 0011
&0010
 0010

100

Exercise: What's the parsimony
score of this tree?

AGGG -AA- TTAGTTTT

Virtual root

101

Exercise: What's the parsimony
score of this tree?

AGGG -AA- TTAGTTTT

Virtual root

1+2+2+1=6

102

Parsimony

● Time complexity to score one tree

MSA with n taxa and m sites

→ (n-2) * m calculations; n-2 is the number of inner nodes of a tree with n taxa

→ O(nm), but the constant hidden in O() is very small
● Space complexity DNA data

→ alignment: n * m * 4 bits

→ ancestral nodes: (n-2) * m * 4 bits

→ score counter: (n-2) * 32 bits

→ space complexity O(nm), but the constant hidden in O() is very small
● Maximum Likelihood: same time & space complexity, but constants much, much

larger!

103

Parsimony Implementation Notes

● Intersections and Unions can be implemented efficiently at the bit-level
● 4 bits for one DNA character (remember, ambiguous character encoding)
● Plain implementation: 32 bits
● SSE3 vector intrinsics: 128 bits
● AVX vector intrinsics: 256 bits
● Parsimonator program (www.exelixis-lab.org/software.html)

→ uses SSE3 and AVX intrinsics

→ I will show a demo now

→ Implements simple search algorithm

→ probably fastest available open-source parsimony implementation

http://www.exelixis-lab.org/software.html

104

Parsimony Implementation Notes

● Without going into the details:
● In the parsimonator implementation we need to compute a so-

called population count (popcount) that computes the number of
bits (# mutations) that are set to 1 in a 32-, 128-, or 256-bit word

● popcount is a very important operation
● There are various fancy bit-twisting implementations for fast
popcounts

● In fact, this operation is so important that modern x86
architectures have a dedicated HW-based popcount

● You can use it in C code via __builtin_popcount(x)

105

Parsimony Implementation Notes

● Why did we write parsimonator?
● A paper was published that claimed to have achieved a

FPGA-based acceleration of the parsimony function of up to
factor 10,000

● Remember: the speedup is defined as T(1)/T(N), where T(1)
is the fastest available sequential implementation/algorithm!

● Compared to Parsimonator (AVX version), the corresponding
FPGA design achieved a speedup of up to 10, only!

● N. Alachiotis, A. Stamatakis: "FPGA Acceleration of the
Phylogenetic Parsimony Kernel?", FPL 2011.

106

How do we search for “good” trees
under any criterion?

107

Search Space

good

bad → random trees

Search Space

Best tree according to f()

108

Tree Search Algorithms

● How do we obtain an initial starting tree with n taxa →
comprehensive tree

→ NJ or UPGMA tree

→ random tree

→ stepwise addition algorithm
● How do we change such a comprehensive tree to improve

its score?

Scores can be improved with optimality criteria: least
squares, minimum evolution, parsimony, maximum
likelihood

109

Building a Random Tree

Seq0
Seq1
Seq2
Seq3
Seq4

110

Building a Random Tree

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

111

Building a Random Tree

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

112

Building a Random Tree

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

Seq0

113

Randomized Stepwise Addition
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

114

Randmoized Stepwise Addition
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

115

Randomized Stepwise Addition
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2?

116

Randomized Stepwise Addition
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

Best parsimony insertion score

117

Randomized Stepwise Addition
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

118

Randomized Stepwise Addition
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

Seq0?

119

Randomized Stepwise Addition
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

Seq0

120

Randomized Stepwise Addition
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

Seq0

Distinct addition order, e.g.,
Seq0→Seq1→Seq2→Seq3→Seq4

can yield a different tree!

121

Why are distinct Starting Trees
useful?

good

bad

Search Space
Search Strategy

122

Why are distinct Starting Trees
useful?

good

bad

Search Space
Search Strategy

This is the drawback of using NJ or UPGMA
trees as starting trees → only one tree

123

The number of trees

Stepwise addition is like following a single
path through this!

Comprehensive
starting tree

124

Random versus Reasonable
Starting trees

time

Optimality
score reasonable

random

125

Search Strategies

● Given a comprehensive tree

● Apply topological alteration mechanisms in some order to improve the score,
for instance, via

● Hill-climbing
● Simulated annealing
● Some other technique

→ design of ad hoc heuristics
● The three basic moves are:

● NNI: Nearest Neighbor Interchange
● SPR: Subtree Pruning and Re-Grafting
● TBR: Tree Bisection and Reconnection

126

NNI

127

NNI

128

NNI

129

NNI

130

SPR

T5

T2

T6

T4

T3

T1

131

SPR

T5

T2

T6

T4

T3

T1

+1

132

SPR

T5

T2

T6

T4

T3

T1

+1

133

SPR

T5

T2
T6

T4

T3

T1

+1

134

SPR

T5

T2T6

T4

T3

T1

+1

135

SPR

T5

T2

T6
T4

T3

T1

+2

136

SPR

T5

T2

T6
T4

T3

T1

+2

137

TBR

138

TBR

139

TBR

140

TBR

141

TBR

142

Question

● How could one design a search algorithm for
the least squares criterion given a function f()
and a distance matrix D to compute the least
squares score on a given tree?

143

The Parsimonator Algorithm

● Build a randomized stepwise addition order parsimony tree
● Apply SPR moves to all subtrees of the current (comprehensive) tree with

a rearrangement radius of 20
● If the rearrangement of a subtree yields an improved parsimony score,

keep it immediately
→ this is somewhat greedy as opposed to a steepest ascent hill climbing algorithm

● Continue applying SPR moves with a radius of 20 to all subtrees until no
tree with a better parsimony score can be found

● There are much more sophisticated algorithms available
→ TNT tool by Pablo Goloboff

● Keep in mind that parsimony returns discrete scores, that is, there may be
many equally parsimonious trees among which we can not distinguish!

144

Parsimony & Long Branch Attraction

● Because parsimony tries to minimize the number of
mutations it faces some problems on trees with long
branches

A C

B D

A

C

B

D

Correct tree

Wrong tree inferred by parsimony

Long branch attraction

145

Parsimony & Long Branch Attraction
● Settings under which parsimony recovers the wrong tree are also called “the

Felsenstein Zone” after Joe Felsenstein who has made numerous very important
contributions to the field, e.g.

● The Maximum Likelihood model
● The Bootstrapping procedure

● If you are interested in statistics, there are some on-line courses by Joe at
http://evolution.gs.washington.edu/courses.html

http://evolution.gs.washington.edu/courses.html

146

On-line Resources

● https://cme.h-its.org/exelixis//web/teaching/slides.html

● At the above page you will find all slides of my regular lecture
on “Introduction to Bioinformtics for Computer Scientists”
including many more advanced topics in the area of
phylogenetic inference

● You will also find links to youtube recordings of these lectures
there !

https://cme.h-its.org/exelixis//web/teaching/slides.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	NNI
	Slide 127
	Slide 128
	Slide 129
	SPR
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	TBR
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146

