Phylogenetic Inference

Alexandros Stamatakis^{1,2,3}

Institute of Computer Science, Foundation for Research and Technology - Hellas

 Heidelberg Institute for Theoretical Studies
 Institute of Theoretical Informatics, Karlsruhe Institute of Technology

 <u>www.biocomp.gr</u> (Crete lab)

www.exelixis-lab.org (Heidelberg lab)

1

Plan for Today

- Phylogenetic Inference
- Phylogenetic scoring criteria
- Phylogenetic search algorithms

How many unrooted 4-taxon trees exist?

3

How many rooted 4-taxon trees exist?

4

Tree Counts

- Unrooted binary trees
 - 4 taxa \rightarrow 3 distinct trees
 - A tree with *n* taxa has *n-2* inner nodes
 - And 2n-3 branches
- Rooted binary trees
 - 4 taxa → 3 unrooted trees * 5 branches each (rooting points) = 15 trees
 - *n-1* inner nodes
 - 2n-2 branches

The number of trees

3 taxa = 1 tree

 \prec

The number of trees

4 taxa: 3 trees u: # trees of size 4-1 := 1 v: # branches in a tree of size 4-1 := 3 Number of unrooted binary trees with 4 taxa: u * v = 3

The number of trees

5 taxa: 15 trees u = 3 v = 5Number of unrooted trees with 5 taxa: 3 * 5 = 15

The number of trees 6 taxa: 105 trees u = 15 v = 7 u * v = 105

The number of trees explodes!

Equation for the number of unrooted trees

• Simple proof via induction

$$\prod_{i=3}^{n} (2i-5)$$

- The number of rooted trees for *n* taxa simply is the number of unrooted trees for *n*+1 taxa
- The additional (n+1th) taxon represents all possible rootings for all unrooted trees with n taxa

trees with 2000 tips

stamatak@exelixis:~/Desktop/GIT/TreeCounter\$./treeCounter -n 2000

GNU GPL tree number calculator released June 2011 by Alexandros Stamatakis

Number of unrooted binary trees for 2000 taxa: 300496381742116561516329100656818149813772320742370130895049540430126365252583082108276859966882470004643527

Scoring Trees

- Now we know how many unrooted candidate trees there exist for n taxa
- How do we chose among them?
 - \rightarrow we need some scoring criterion f() to evaluate them
 - \rightarrow finding the optimal tree under most of these criteria is NP-Hard

Scoring Criteria and Tree Inference Algorithms

Building Trees

- We distinguish between
 - Distance-based methods
 - \rightarrow use MSA to compute a matrix of pair-wise distances
 - \rightarrow build a tree using these distances
 - → Heuristics (essentially hierarchical clustering methods)
 - → Neighbor Joining: NJ
 - → Unweighted Pair Group Method with Arithmetic Mean: UPGMA
 - \rightarrow least-squares method: explicit optimality criterion
 - Character-based methods
 - \rightarrow optimality criteria *f()* operate directly on the MSA & tree
 - \rightarrow parsimony
 - → maximum likelihood
 - \rightarrow Bayesian inference
 - $\rightarrow\,$ take the current tree topology & MSA to calculate a score
 - $\rightarrow\,$ the score tells us how well the MSA data fits the tree

Less accurate, but faster

Slow, but more accurate

Building Trees

- We distinguish between
 - Distance-based methods
 - \rightarrow use MSA to compute a matrix of pair-wise distances
 - \rightarrow build a tree using these distances
 - → Heuristics (essentially hierarchical clustering methods)
 - → Neighbor Joining: NJ
 - → Unweighted Pair Group Method with Arithmetic Mean: UPGMA
 - → least-squares method: explicit optimality criterion
 - Character-based methods
 - \rightarrow optimality criteria f() operate directly on the MSA
 - → parsimony
 - → maximum likelihood
 - → Bayesian inference

Memory-intensive!

- \rightarrow take the current tree topology & MSA to calculate a score
- \rightarrow the score tells us how well the MSA data fits the tree

Less accurate, but faster

Slow, but more accurate

NP-Hardness

- Because of the **super-exponential increase** in the number of possible trees for *n* taxa ...
- all interesting optimality criteria on trees are NP-hard:
 - Least squares
 - Parsimony \rightarrow discrete criterion
 - Likelihood \rightarrow statistical criterion
 - Bayesian \rightarrow integrate likelihood over entire tree space

Search Space

Let's start with distance based methods/heuristics

Given a kind of distance matrix $D_{i,j}$ where i,j=1...4

Given a kind of distance matrix $D_{i,j}$ where i,j=1...4Find minimum and merge taxa

Given a kind of distance matrix $D_{i,j}$ where i,j=1...4Find minimum and merge taxa Compute a new distance matrix of size n-1 = 3Find minimum

Given a kind of distance matrix $D_{i,j}$ where i,j=1...4Find minimum and merge taxa Compute a new distance matrix of size n-1 = 3Find minimum and merge taxa

Given a kind of distance matrix $D_{i,j}$ where i,j=1...4Find minimum and merge taxa Compute a new distance matrix of size n-1 = 3Find minimum and merge taxa Etc.

Space complexity: $O(n^2)$

Time complexity: *O(n³)*

Key question: how do we compute distance between X and A or X and B respectively $^{24} \rightarrow$ for progressive alignment we may align the profile of X with all remaining sequences

Neighbor Joining Algorithm

• For each tip compute

 $u_i = \Sigma_j D_{ij} / (n-2)$

- $\rightarrow\,$ this is $\,$ in principle the average distance to all other tips $\,$
- \rightarrow the denominator is *n*-2 instead of *n*, see below why
- Find the pair of tips, (i, j) for which D_{ij} - u_i - u_j is minimal
- Connect the tips (*i*,*j*) to build a new ancestral node X
- The branch lengths from the ancestral node *X* to *i* and *j* are:

 $b_i = 0.5 D_{ij} + 0.5 (u_i - u_j)$

- $b_j = 0.5 D_{ij} + 0.5 (u_j u_i)$
- Update the distance matrix:
 - \rightarrow Compute distance between the new node X and each remaining tip as follows:

 $D_{ij,k} = (D_{ik} + D_{jk} - D_{ij})/2$

- Replace tips *i* and *j* by the new node *X* which is now treated as a tip
- Repeat until only two nodes remain
 - $\rightarrow\,$ connect the remaining two nodes with each other

The UPGMA algorithm

- Usually introduced before Neighbor Joining $NJ \rightarrow it$ is simpler and older
- UPGMA is practically not used any more today for phylogeny reconstruction, but it is used for progressive multiple sequence alignment (see MUSCLE algorithm)
- In contrast to NJ it produces *ultrametric* trees!
- It produces rooted trees
- UPGMA stands for: Unweighted Pair Group Method with Arithmetic Mean
- Like NJ it uses a distance matrix *D* for clustering/joining nodes
- UPGMA can be used if we know that we have an ultrametric tree!
 - \rightarrow this is usually not the case!

	А	В	С	D
А		0.4	0.6	0.6
В			0.6	0.6
С				0.2
D				

We will first walk through the algorithm and then look at the formal description!

	А	В	С	D
А		0.4	0.6	0.6
В			0.6	0.6
С			(0.2
D				

D [A][(C,D)] = $\frac{1}{2} * 0.6 + \frac{1}{2} * 0.6$ D [B][(C,D)] = $\frac{1}{2} * 0.6 + \frac{1}{2} * 0.6$

	А	В	(C,D)
А		0.4	0.6
В			0.6
(C, D)			

 $D[A,B][C,D] = \frac{1}{2} * 0.6 + \frac{1}{2} * 0.6$

UPGMA Formal description

- Find the minimum *D[i][j]*
- Merge *i* and $j \rightarrow (i,j)$
- This new group has $n_{(i,j)}$ members, where $n_{(i,j)} := n_i + n_j$
- Connect *i* and *j* to form a new node (*i*,*j*)
- Assign the two branches connecting $i \rightarrow (i,j)$ and $j \rightarrow (i,j)$ the length D[i][j]/2
- Update the distances between (*i*,*j*) and all *k*, where $k \neq i$ and $k \neq j$ via $D[(i,j)][k] = (n_i/(n_i+n_j)) * D[i][k] + (n_i/(n_i+n_j)) * D[j][k]$
- Naive implementation: $O(n^3) \rightarrow$ search for minimum in each instance of matrix D
- Maintain a list of per-column (or per-row) minima
 - \rightarrow update list O(n)
 - \rightarrow look for minimum O(n)
 - $\rightarrow O(n^2)$
- In contrast to NJ we don't need to update the entire matrix each time, thus only $O(n^2)$

UPGMA on non-ultrametric trees

- Can yield misleading results
- Most trees are not ultrametric → do not have equal evolutionary rates among all lineages

UPGMA on non-ultrametric trees

- Can yield misleading results
- Most trees are not ultrametric \rightarrow do not have equal evolutionary r ages Imagine a higher root evolutionary pressure! root → difficult life conditions! D 21 2 A 0 17 27 2 2.833 В 0 12 18 10.833 4 4 B 14 С 10 С 0 13 2 0 8 D 6 6 D Α D С Α В

True tree

Patristic distance matrix

UPGMA tree

UPGMA and NJ

- Ad hoc heuristics
- Good for clustering any type of data on which you can define a reasonable distance
- Now let us look at explicit criteria

 $\rightarrow\,$ given a specific tree tolopology they yield a score

Let's start with a distance-based criterion

Given distance matrix D

	Н	С	G	0
Н		0.0965	0.1140	0.1849
С			0.1180	0.2009
G				0.1947
0				

$$d[H][C] = t1 + t2$$

$$d[H][G] = t1 + t0 + t3$$

$$d[H][O] = t1 + t0 + t4$$

$$d[C][G] = t2 + t0 + t3$$

$$d[C][O] = t2 + t0 + t4$$

$$d[G][O] = t3 + t4$$

Given distance matrix D

	Н	С	G	0
Н		0.0965	0.1140	0.1849
С			0.1180	0.2009
G				0.1947
0				

Find *t0, t1, ..., t4* such that deviation of *d[i][j]* from *D[i][j]* is minimized!

$$\begin{split} Q &:= (d[H][C] - D[H][C])^2 + (d[H][G] - D[H][G])^2 + (d[H][O] \\ - D[H][O])^2 + (d[C][G] - D[C][G])^2 + (d[C][O] - D[C][O])^2 + (d[G][O] - D[G][O])^2 \end{split}$$

d[H][C] = t1 + t2 d[H][G] = t1 + t0 + t3 d[H][O] = t1 + t0 + t4 d[C][G] = t2 + t0 + t3 d[C][O] = t2 + t0 + t4d[G][O] = t3 + t4

Least Squares Example

tree	tO	t1	t2	t3	t4	Q
((H,C),G,O)	0.008840	0.043266	0.053280	0.058908	0.135795	0.000035
((H,G),C,O)	0.000000	0.046212	0.056227	0.061854	0.138742	0.000140
((H,O),C,G)	As above	-	-	-	-	-

Least Squares Example

Least Squares Optimization

- Given a fixed, fully binary, unrooted tree T with n taxa
- Given a pair-wise distance matrix D
- Assign branch lengths t_1 , ..., t_{2n-3} to the tree such that:

the sum of the squared differences between the pair-wise *patristic* (tree-based!) distances d_{ij} and the *plain* pair-wise distances D_{ij} is minimized

• In other words:

 $Q = \sum_{i < j} (D_{ij} - d_{ij})^2 \rightarrow \text{find an assignment } t_1, \dots, t_{2n-3} \text{ to the tree such that } Q \text{ is minimized}$

Q can be minimized by taking the derivative and solving a system of linear equations in $O(n^3)$

Minimization methods for Q that take into account the tree-like structure run in $O(n^2)$ or even O(n)

- Then, also find that tree topology *T* that minimizes *Q*
- Finding the minimal least squares tree is NP-hard

W.H.E. Day "Computational Complexity of Inferring Phylogenies from dissimilarity matrices", *Bulletin of Mathematical Biology* 49: 461-467, 1986.

- *NP-hard* because of tree search problem
- Scoring a single tree takes time between O(n) to $O(n^3)$
- There also exist weighted versions:

 $Q = \sum_{i < j} W_{ij} (D_{ij} - d_{ij})^2$

where $w_{ij} := 1/D_{ij}$ or $w_{ij} := 1/D_{ij}^2$

- We will see how to search for trees a bit later-on
- Make sure you understand the difference between
 - Scoring a single tree
 - Searching for the tree with the best score

Distances

- A preview of the next lecture
- We need to accommodate multiple substitutions in the evolutionary history of sequences

Distances

- A preview of the next lecture
- We need to accommodate multiple substitutions in the evolutionary history of sequences

Minimum Evolution Method

- Similar to least squares
- Explicit Criterion \rightarrow minimize total branch length (tree length) of the reconstructed tree
- Branch lengths are obtained using least-squares method \rightarrow same time complexity
- Instead of searching for the tree that minimizes the squared difference between D[i][j] and d[i][j] that is denoted by Q we search for the tree where t0 + t1 + t2 + t3 + t4 is minimized

tree	tO	tl	t2	t3	t4	Q	Tree length
((H,C),G,O)	0.008840	0.043266	0.053280	0.058908	0.135795	0.000035	0.240741
((H,G),C,O)	0.000000	0.046212	0.056227	0.061854	0.138742	0.000140	0.303035
((H,O),C,G)	As above	-	-	-	-	-	

Distance-based Methods

- Clustering Algorithms/Heuristics
 - Neighbor Joining
 - \rightarrow Heuristic for Minimum Evolution Method
 - UPGMA
- Explicit criteria
 - least squares
 - minimum evolution
- All depend on the accuracy of the pair-wise distance matrix D
- The distance matrix needs to be an exact reflection of the tree

Character-based Methods

- Parsimony
- Maximum Likelihood
- Bayesian Inference

The Parsimony Criterion

- Directly operates on the MSA
- Find the tree that explains the data with the least amount of mutations
- Questions:
 - How do we count the least amount of mutations on a given tree?
 - \rightarrow dynamic programming algorithm
 - How do we find the tree topology that requires the least amount of mutations
 - \rightarrow requires a tree search!
 - \rightarrow remember the number of trees!
 - \rightarrow this is also NP-hard!

MSA

- S1: AAGG
- S2: AAA-
- S3: AGAG
- S4: TTAT

Parsimony Score of this tree = 5

Parsimony Score of this tree = 5 This is also the minimum score for this tree.

Parsimony Score of this tree = 5

Post-order traversal to compute inner states

Compute scores on a site-per-site basis \rightarrow we assume that sites evolve independently!

Parsimony 1+? **Virtual root** TTAT AAGG AGAG AAA -

1+2+1Virtual root 0001 0010 &0010 &1111 0000 G: 0010 0010 0001 0010 0010 1111

1+2+1+1

1+2+1+1=5

Exercise: What's the parsimony score of this tree?

Exercise: What's the parsimony score of this tree? 1+2+2+1=6

• Time complexity to score one tree

MSA with n taxa and m sites

- \rightarrow (*n-2*) * *m* calculations; *n-2* is the number of inner nodes of a tree with *n* taxa
- \rightarrow O(nm), but the constant hidden in O() is very small
- Space complexity DNA data
 - \rightarrow alignment: n * m * 4 bits
 - \rightarrow ancestral nodes: (*n*-2) * *m* * 4 bits
 - \rightarrow score counter: (*n*-2) * 32 bits
 - \rightarrow space complexity O(nm), but the constant hidden in O() is very small
- Maximum Likelihood: same time & space complexity, but constants much, much larger!

Parsimony Implementation Notes

- Intersections and Unions can be implemented efficiently at the bit-level
- 4 bits for one DNA character (remember, ambiguous character encoding)
- Plain implementation: 32 bits
- SSE3 vector intrinsics: 128 bits
- AVX vector intrinsics: 256 bits
- Parsimonator program (www.exelixis-lab.org/software.html)
 - \rightarrow uses SSE3 and AVX intrinsics
 - \rightarrow I will show a demo now
 - \rightarrow Implements simple search algorithm
 - \rightarrow probably fastest available open-source parsimony implementation

Parsimony Implementation Notes

- Without going into the details:
- In the parsimonator implementation we need to compute a socalled population count (popcount) that computes the number of bits (# mutations) that are set to 1 in a 32-, 128-, or 256-bit word
- popcount is a very important operation
- There are various fancy bit-twisting implementations for fast popcounts
- In fact, this operation is so important that modern x86 architectures have a dedicated HW-based popcount
- You can use it in C code via ____builtin_popcount(x)

Parsimony Implementation Notes

- Why did we write parsimonator?
- A paper was published that claimed to have achieved a FPGA-based acceleration of the parsimony function of up to factor 10,000
- Remember: the speedup is defined as T(1)/T(N), where T(1) is the fastest available sequential implementation/algorithm!
- Compared to Parsimonator (AVX version), the corresponding FPGA design achieved a speedup of up to 10, only!
- N. Alachiotis, A. Stamatakis: "FPGA Acceleration of the Phylogenetic Parsimony Kernel?", *FPL 2011*.

How do we search for "good" trees under any criterion?

Search Space

Tree Search Algorithms

- How do we obtain an initial starting tree with *n* taxa \rightarrow comprehensive tree
 - \rightarrow NJ or UPGMA tree
 - \rightarrow random tree
 - \rightarrow stepwise addition algorithm
- How do we change such a comprehensive tree to improve its score?

Scores can be improved with optimality criteria: least squares, minimum evolution, parsimony, maximum likelihood

Seq0 Seq1 Seq2 Seq3 Seq4

Seq0 Seq1 Seq2 Seq3 Seq4

Seq3

Seyu

Seq1 Seq2

Seys

Why are distinct Starting Trees useful?

Why are distinct Starting Trees useful?

The number of trees Comprehensive starting tree MILLING MANUTATION Stepwise addition is like following a single path through this! 123

Search Strategies

- Given a comprehensive tree
- Apply topological alteration mechanisms in some order to improve the score, for instance, via
 - Hill-climbing
 - Simulated annealing
 - Some other technique
 - \rightarrow design of ad hoc heuristics
- The three basic moves are:
 - NNI: Nearest Neighbor Interchange
 - **SPR**: Subtree Pruning and Re-Grafting
 - **TBR**: Tree Bisection and Reconnection

NNI

Question

• How could one design a search algorithm for the least squares criterion given a function *f()* and a distance matrix *D* to compute the least squares score on a given tree?

The Parsimonator Algorithm

- Build a randomized stepwise addition order parsimony tree
- Apply SPR moves to all subtrees of the current (comprehensive) tree with a rearrangement radius of 20
- If the rearrangement of a subtree yields an improved parsimony score, keep it immediately

 $\rightarrow\,$ this is somewhat greedy as opposed to a steepest ascent hill climbing algorithm

- Continue applying SPR moves with a radius of 20 to all subtrees until no tree with a better parsimony score can be found
- There are much more sophisticated algorithms available

 $\rightarrow\,$ TNT tool by Pablo Goloboff

• Keep in mind that parsimony returns discrete scores, that is, there may be many equally parsimonious trees among which we can not distinguish!

Parsimony & Long Branch Attraction

 Because parsimony tries to minimize the number of mutations it faces some problems on trees with long branches

Parsimony & Long Branch Attraction

- Settings under which parsimony recovers the wrong tree are also called "the Felsenstein Zone" after *Joe Felsenstein* who has made numerous very important contributions to the field, e.g.
 - The Maximum Likelihood model
 - The Bootstrapping procedure
- If you are interested in statistics, there are some on-line courses by Joe at http://evolution.gs.washington.edu/courses.html

On-line Resources

- https://cme.h-its.org/exelixis//web/teaching/slides.html
- At the above page you will find all slides of my regular lecture on "Introduction to Bioinformtics for Computer Scientists" including many more advanced topics in the area of phylogenetic inference
- You will also find links to youtube recordings of these lectures there !