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Plan for Today

● Phylogenetic Inference
● Phylogenetic scoring criteria 
● Phylogenetic search algorithms
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How many unrooted 4-taxon trees 
exist?
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How many rooted 4-taxon trees 
exist?
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Tree Counts

● Unrooted binary trees
● 4 taxa → 3 distinct trees
● A tree with n taxa has n-2 inner nodes
● And 2n-3 branches

● Rooted binary trees
● 4 taxa → 3 unrooted trees * 5 branches each 

(rooting points) = 15 trees
● n-1 inner nodes 
● 2n-2 branches
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The number of trees

3 taxa = 1 tree
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The number of trees

4 taxa: 3 trees
u: # trees of size 4-1 := 1
v: # branches in a tree of size 4-1 := 3
Number of unrooted binary trees with 4 taxa: u * v = 3
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The number of trees

5 taxa: 15 trees
u = 3
v = 5 
Number of unrooted trees with 5 taxa: 3 * 5 = 15
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The number of trees

6 taxa: 105 trees
u = 15
v = 7
u * v = 105
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The number of trees explodes!

BANG !
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Equation for the number of unrooted 
trees

● Simple proof via induction

● The number of rooted trees for n taxa simply is 
the number of unrooted trees for n+1 taxa

● The additional (n+1th) taxon represents all 
possible rootings for all unrooted trees with n 
taxa
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# trees with 2000 tips
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Scoring Trees

● Now we know how many unrooted candidate trees there exist for 
n taxa

● How do we chose among them?

→ we need some scoring criterion f() to evaluate them

→ finding the optimal tree under most of these criteria is NP-Hard  
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f() f() f()

1.0 2.0 3.0

A: ACGG
B: AGGG
C: GA-A
D: AAGG

A: ACGG
B: AGGG
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D: AAGG

A: ACGG
B: AGGG
C: GA-A
D: AAGG
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Scoring Criteria and Tree Inference 
Algorithms
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Building Trees

● We distinguish between
● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA & tree 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate
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Building Trees

● We distinguish between
● Distance-based methods 

→ use MSA to compute a matrix of pair-wise distances

→ build a tree using these distances 

→ Heuristics (essentially hierarchical clustering methods)

→ Neighbor Joining: NJ

→ Unweighted Pair Group Method with Arithmetic Mean: UPGMA

→ least-squares method: explicit optimality criterion
● Character-based methods 

→ optimality criteria f() operate directly on the MSA 

→ parsimony

→ maximum likelihood 

→ Bayesian inference

→ take the current tree topology & MSA to calculate a score

→ the score tells us how well the MSA data fits the tree

Less accurate,
but faster

Slow, but more 
accurate

Memory-intensive!
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NP-Hardness

● Because of the super-exponential increase in the number of 
possible trees for n taxa ...

● all interesting optimality criteria on trees are NP-hard:

● Least squares
● Parsimony → discrete criterion
● Likelihood → statistical criterion
● Bayesian → integrate likelihood over entire tree space 
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Search Space

good

bad → random trees

Search Space

Best tree according to f()
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Let’s start with distance based 
methods/heuristics
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Neighbor Joining → Principle

A        B       C        D

A

D

Given a kind of distance matrix Di,j where i,j=1...4 
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Neighbor Joining → Principle

A        B       C        D

A

D

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa 
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X
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Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum

X

B

C D

min

X



  
23

Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum and merge taxa
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Neighbor Joining → Principle

A        B       X   

A

Given a kind of distance matrix Di,j where i,j=1...4
Find minimum and merge taxa
Compute a new distance matrix of size n-1 = 3 
Find minimum and merge taxa
Etc.
Space complexity: O(n2)
Time complexity: O(n3)
Key question: how do we compute distance between X and A or X and B respectively
→ for progressive alignment we may align the profile of X with all remaining sequences

X

B

C D

min

X

A B

Y



  

Neighbor Joining Algorithm
● For each tip compute 

ui = j Dij/(n-2) 

→ this is  in principle the average distance to all other tips

→ the denominator is n-2 instead of n, see below why

● Find the pair of tips, (i, j) for which Dij-ui-uj is minimal
● Connect the tips (i,j) to build a new ancestral node X
● The branch lengths from the ancestral node X to i and j are:

bi = 0.5 Dij + 0.5 (ui-uj)

bj = 0.5 Dij + 0.5 (uj-ui) 

● Update the distance matrix:
→ Compute distance between the new node X and each remaining tip as follows:

Dij,k = (Dik+Djk-Dij)/2

● Replace tips i and j by the new node X which is now treated as a tip
● Repeat until only two nodes remain

→ connect the remaining two nodes with each other
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The UPGMA algorithm

● Usually introduced before Neighbor Joining NJ → it is simpler and older
● UPGMA is practically not used any more today for phylogeny 

reconstruction, but it is used for progressive multiple sequence 
alignment (see MUSCLE algorithm)  

● In contrast to NJ it produces ultrametric trees!
● It produces rooted trees
● UPGMA stands for: Unweighted Pair Group Method with Arithmetic 

Mean
● Like NJ it uses a distance matrix D for clustering/joining nodes
● UPGMA can be used if we know that we have an ultrametric tree! 

→ this is usually not the case!
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UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

We will first walk through the algorithm 
and then look at the formal description!
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UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D
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UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

C D

0.1 0.1
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UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

C D

0.1 0.1

Branch length := ½ * D[C][D]
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UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

C D

0.1 0.1

Branch length := ½ * D[C][D]
Ensures ultrametricity!



32

UPGMA example

A B C D

A 0.4 0.6 0.6

B 0.6 0.6

C 0.2

D

C D

0.1 0.1

D [A][(C,D)] = ½ * 0.6 + ½ * 0.6
D [B][(C,D)] = ½ * 0.6 + ½ * 0.6
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UPGMA example

A B (C,D)

A 0.4 0.6

B 0.6

(C, D)

C D

0.1 0.1
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UPGMA example

A B (C,D)

A 0.4 0.6

B 0.6

(C, D)

C D

0.1 0.1
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UPGMA example

A B (C,D)

A 0.4 0.6

B 0.6

(C, D)

C D

0.1 0.1

A B

0.2
0.2
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UPGMA example

A B (C,D)

A 0.4 0.6

B 0.6

(C, D)

C D

0.1 0.1

A B

0.2
0.2

D[A,B][C,D] = ½ * 0.6 + ½ * 0.6 
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UPGMA example

(A,B) (C,D)

(A,B) 0.6

(C,D)

C D

0.1 0.1

A B

0.2
0.2
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UPGMA example

(A,B) (C,D)

(A,B) 0.6

(C,D)

C D

0.1 0.1

A B

0.2
0.2
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UPGMA example

(A,B) (C,D)

(A,B) 0.6

(C,D)

C D

0.1 0.1

A B

0.2
0.2

0.1
0.2
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UPGMA example

(A,B) (C,D)

(A,B) 0.6

(C,D)

C D

0.1 0.1

A B

0.2
0.2

0.1
0.2

0.6
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UPGMA Formal description

● Find the minimum D[i][j]
● Merge i and j → (i,j) 
● This new group has n(i,j) members, where n(i,j) := ni +nj

● Connect i and j to form a new node (i,j)
● Assign the two branches connecting i → (i,j) and j → (i,j) the length D[i][j]/2
● Update the distances between (i,j) and all k, where k ≠ i and k ≠ j via D[(i,j)][k] = (ni/(ni+nj)) 

* D[i][k] + (nj/(ni+nj)) * D[j][k]

● Naive implementation: O(n3) → search for minimum in each instance of matrix D
● Maintain a list of per-column (or per-row) minima

→ update list O(n)

→ look for minimum O(n)

→ O(n2)
● In contrast to NJ we don't need to update the entire matrix each time, thus only O(n2)
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UPGMA on non-ultrametric trees

● Can yield misleading results
● Most trees are not ultrametric → do not have equal 

evolutionary rates among all lineages

A

B C

D

2 2

13

4 4

10

A B C D

A 0 17 21 27

B 0 12 18

C 0 14

D 0

10.8332.833

2

8
6 6

B C D A

True tree Patristic distance matrix UPGMA tree

root root
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UPGMA on non-ultrametric trees

● Can yield misleading results
● Most trees are not ultrametric → do not have equal 

evolutionary rates among all lineages

A

B C

D

2 2

13

4 4

10

A B C D

A 0 17 21 27

B 0 12 18

C 0 14

D 0

10.8332.833

2

8
6 6

B C D A

True tree Patristic distance matrix UPGMA tree

root root
Imagine a higher
evolutionary pressure!
→ difficult life conditions!
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UPGMA and NJ

● Ad hoc heuristics 
● Good for clustering any type of data on which 

you can define a reasonable distance 
● Now let us look at explicit criteria 

→ given a specific tree tolopology they yield a 
score 
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Let’s start with a distance-based 
criterion
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Least Squares

Human

Chimp

Gorilla

Orangutang

t0

t1

t2

t3

t4
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Least Squares

Human

Chimp

Gorilla

Orangutang

t0

t1

t2

t3

t4

d[H][C] = t1 + t2
d[H][G] = t1 + t0 + t3
d[H][O] = t1 + t0 + t4
d[C][G] = t2 + t0 + t3
d[C][O] = t2 + t0 + t4
d[G][O] = t3 + t4 

Patristic distances



48

Least Squares

Human

Chimp

Gorilla

Orangutang

t0

t1

t2

t3

t4

d[H][C] = t1 + t2
d[H][G] = t1 + t0 + t3
d[H][O] = t1 + t0 + t4
d[C][G] = t2 + t0 + t3
d[C][O] = t2 + t0 + t4
d[G][O] = t3 + t4 

H C G O

H 0.0965 0.1140 0.1849

C 0.1180 0.2009

G 0.1947

O

Given distance matrix D
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Least Squares

Human

Chimp

Gorilla

Orangutang

t0

t1

t2

t3

t4

d[H][C] = t1 + t2
d[H][G] = t1 + t0 + t3
d[H][O] = t1 + t0 + t4
d[C][G] = t2 + t0 + t3
d[C][O] = t2 + t0 + t4
d[G][O] = t3 + t4 

H C G O

H 0.0965 0.1140 0.1849

C 0.1180 0.2009

G 0.1947

O

Given distance matrix D

Find t0, t1, ..., t4 such that deviation of d[i][j] from D[i][j] is 
minimized!

Q := (d[H][C] – D[H][C])2 + (d[H][G] - D[H][G])2 + (d[H][O] 
- D[H][O])2 + (d[C][G] - D[C][G])2 + (d[C][O] - D[C][O])2 + 
(d[G][O] - D[G][O])2
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Least Squares Example

tree t0 t1 t2 t3 t4 Q

((H,C),G,O) 0.008840 0.043266 0.053280 0.058908 0.135795 0.000035

((H,G),C,O) 0.000000 0.046212 0.056227 0.061854 0.138742 0.000140

((H,O),C,G) As above - - - - -
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Least Squares Example

tree t0 t1 t2 t3 t4 Q

((H,C),G,O) 0.008840 0.043266 0.053280 0.058908 0.135795 0.000035

((H,G),C,O) 0.000000 0.046212 0.056227 0.061854 0.138742 0.000140

((H,O),C,G) As above - - - - -

Star tree

H

C

G

O
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Least Squares Optimization
● Given a fixed, fully binary, unrooted tree T with n taxa

● Given a pair-wise distance matrix D

● Assign branch lengths t1 , ..., t2n-3 to the tree such that:

the sum of the squared differences between the pair-wise patristic (tree-based!) 
distances dij and the plain pair-wise distances Dij is minimized

● In other words:

Q = Σi<j (Dij – dij)2  → find an assignment t1 ,..., t2n-3 to the tree such that Q is 
minimized

Q can be minimized by taking the derivative and solving a system of linear equations 
in O(n3)

Minimization methods for Q that take into account the tree-like structure run in O(n2) 
or even O(n)

● Then, also find that  tree topology T that minimizes Q

● Finding the minimal least squares tree is NP-hard

W.H.E. Day “Computational Complexity of Inferring Phylogenies from dissimilarity 
matrices”, Bulletin of Mathematical Biology 49: 461-467, 1986. 
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Least Squares

● NP-hard because of tree search problem 

● Scoring a single tree takes time between O(n) to O(n3)

● There also exist weighted versions: 

Q = Σi<j wij(Dij – dij)2

where wij := 1/Dij or  wij := 1/Dij2

● We will see how to search for trees a bit later-on

● Make sure you understand the difference between 

● Scoring a single tree 
● Searching for the tree with the best score 



54

Distances

● A preview of the next lecture
● We need to accommodate multiple substitutions 

in the evolutionary history of sequences

G A T A G

Sequence 1 Sequence 2 Sequence 3

Hidden mutations
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Distances

● A preview of the next lecture
● We need to accommodate multiple substitutions 

in the evolutionary history of sequences

G A T A G

Sequence 1 Sequence 2 Sequence 3

Simple edit distances will not be sufficient →
we need statistical modes! 
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Minimum Evolution Method

● Similar to least squares 
● Explicit Criterion → minimize total branch length (tree length) of the reconstructed 

tree
● Branch lengths are obtained using least-squares method → same time complexity
● Instead of searching for the tree that minimizes the squared difference between   

D[i][j] and d[i][j] that is denoted by Q we search for the tree where t0 + t1 + t2 + t3 + 
t4 is minimized

tree t0 t1 t2 t3 t4 Q Tree length

((H,C),G,O) 0.008840 0.043266 0.053280 0.058908 0.135795 0.000035 0.240741

((H,G),C,O) 0.000000 0.046212 0.056227 0.061854 0.138742 0.000140 0.303035

((H,O),C,G) As above - - - - -
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Distance-based Methods

● Clustering Algorithms/Heuristics

● Neighbor Joining 

→ Heuristic for Minimum Evolution Method
● UPGMA

● Explicit criteria

● least squares
● minimum evolution

● All depend on the accuracy of the pair-wise distance matrix D

● The distance matrix needs to be an exact reflection of the tree
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Character-based Methods

● Parsimony
● Maximum Likelihood
● Bayesian Inference 
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The Parsimony Criterion

● Directly operates on the MSA

● Find the tree that explains the data with the least amount of mutations

● Questions:

● How do we count the least amount of mutations on a given tree?

→ dynamic programming algorithm
● How do we find the tree topology that requires the least amount of 

mutations

→ requires a tree search!

→ remember the number of trees!

→ this is also NP-hard!
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Parsimony

S1: AAGG
S2: AAA-
S3: AGAG
S4: TTAT

MSA
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Parsimony

S1: AAGG
S2: AAA-
S3: AGAG
S4: TTAT

MSA

AAGG

AAA-

AGAG

TTAT
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Parsimony

AAGG

AAA-

AGAG

TTAT

Find an assignment of sequences 
to inner nodes such that the number of mutations

on the tree is minimized
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Parsimony

AAGG

AAA-

AGAG

TTAT

This is somewhat similar to the tree alignment problem,
but here, we are given an alignment!
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Parsimony

AAGG

AAA-

AGAG

TTAT

What could the inner sequences look like?
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

Parsimony Score of this tree = 5
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

Parsimony Score of this tree = 5
This is also the minimum score for
this tree.
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

Parsimony Score of this tree = 5

Gaps (also called Indels → Insertions or Deletions) are 
treated as so-called undetermined characters, also 
frequently denoted as N.
The interpretation is that N could be either A, C, G, or T.
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Parsimony

AAGG

AAA-

AGAG

TTAT

AAAG AGAG

1

0
1

0

3

So, how do we compute the score?
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Parsimony

AAGG

AAA-

AGAG

TTAT

Virtual root



76

Parsimony

AAGG AAA- AGAGTTAT

Virtual root
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

The score will be the same, regardless of 
where we place the root 
→ makes computations much easier

Essentially we assume that evolution is 
time-reversible, that is, it occurred in the same
way if followed forward or backward in time

For Maximum Likelihood we use a similar concept!
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

Post-order traversal to compute inner states
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

Compute scores on a site-per-site basis
→ we assume that sites evolve independently!
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Parsimony

A A AT

Virtual root
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Parsimony

1000 1000
0001

Virtual root

1000
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Parsimony

1000 1000
0001

Virtual root

1000

 1000
&1000
 1000

A: 1000

Intersection of sets of
possible states at 
ancestor
If intersection not empty
→ no mutation
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Parsimony

1000 1000
0001

Virtual root

1000

 1000
&0001
 0000A: 1000

Intersection empty
→ count one mutation
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Parsimony

1000 1000
0001

Virtual root

1000

 1000
&0001
 0000A: 1000

+1
Intersection empty
→ count one mutation
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Parsimony

1000 1000
0001

Virtual root

1000

 1000
|0001
 1001A: 1000

1 Ancestral state: union!
→ key trick, defer decision
Whether this is a T or A to a 
later point!

A or T: 1001



86

Parsimony

1000 1000
0001

Virtual root

1000

 1000
&1001
 1000

A: 1000

1

A or T: 1001

Intersection non-empty,
Overall score for this 
Site: 1
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Parsimony

1000 1000
0001

Virtual root

1000

 1000
&1001
 1000

A: 1000

1

A or T: 1001

Intersection non-empty,
Overall score for this 
Site: 1
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+?
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+2
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+2+?
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+2+1
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Parsimony

AAGG AAA- AGAGTTAT

Virtual root

1+2+1



94

Parsimony

0010 1111 00100001

Virtual root

1+2+1
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Parsimony

0010 1111 00100001

Virtual root

1+2+1

  0001
&0010
 0000

G: 0010

  0010
&1111
 0010
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Parsimony

0010 1111 00100001

Virtual root

1+2+1+?

  0001
|0010
 0011

G: 0010

  0010
&1111
 0010

G or T: 0011
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Parsimony

0010 1111 00100001

Virtual root

1+2+1+1

  0001
|0010
 0011

G: 0010

  0010
&1111
 0010

G or T: 0011
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Parsimony

0010 1111 00100001

Virtual root

1+2+1+1

  0001
|0010
 0011

G: 0010

  0010
&1111
 0010

G or T: 0011

 0011
&0010
 0010
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Parsimony

0010 1111 00100001

Virtual root

1+2+1+1= 5

  0001
|0010
 0011

G: 0010

  0010
&1111
 0010

G or T: 0011

 0011
&0010
 0010
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Exercise: What's the parsimony 
score of this tree?

AGGG -AA- TTAGTTTT

Virtual root
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Exercise: What's the parsimony 
score of this tree?

AGGG -AA- TTAGTTTT

Virtual root

1+2+2+1=6
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Parsimony

● Time complexity to score one tree

MSA with n taxa and m sites

→ (n-2) * m calculations; n-2 is the number of inner nodes of a tree with n taxa

→ O(nm), but the constant hidden in O() is very small
● Space complexity DNA data

→ alignment: n * m * 4 bits

→ ancestral nodes: (n-2) * m * 4 bits

→ score counter: (n-2) * 32 bits

→ space complexity O(nm), but the constant hidden in O() is very small
● Maximum Likelihood: same time & space complexity, but constants much, much 

larger!
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Parsimony Implementation Notes

● Intersections and Unions can be implemented efficiently at the bit-level
● 4 bits for one DNA character (remember, ambiguous character encoding) 
● Plain implementation: 32 bits
● SSE3 vector intrinsics: 128 bits
● AVX vector intrinsics: 256 bits
● Parsimonator program (www.exelixis-lab.org/software.html)

→ uses SSE3 and AVX intrinsics

→ I will show a demo now

→ Implements simple search algorithm

→ probably fastest available open-source parsimony implementation 

http://www.exelixis-lab.org/software.html
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Parsimony Implementation Notes

● Without going into the details:
● In the parsimonator implementation we need to compute a so-

called population count (popcount) that computes the number of 
bits (# mutations) that are set to 1 in a 32-, 128-, or 256-bit word

● popcount is a very important operation
● There are various fancy bit-twisting implementations for fast 
popcounts

● In fact, this operation is so important that modern x86 
architectures have a dedicated HW-based popcount

● You can use it in C code via  __builtin_popcount(x)
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Parsimony Implementation Notes

● Why did we write parsimonator?
● A paper was published that claimed to have achieved a 

FPGA-based acceleration of the parsimony function of up to 
factor 10,000

● Remember: the speedup is defined as T(1)/T(N), where T(1) 
is the fastest available sequential implementation/algorithm!

● Compared to Parsimonator (AVX version), the corresponding 
FPGA design achieved a speedup of up to 10, only!

● N. Alachiotis, A. Stamatakis: "FPGA Acceleration of the 
Phylogenetic Parsimony Kernel?", FPL 2011. 
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How do we search for “good” trees 
under any criterion? 
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Search Space

good

bad → random trees

Search Space

Best tree according to f()
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Tree Search Algorithms

● How do we obtain an initial starting tree with n taxa → 
comprehensive tree

→ NJ or UPGMA tree

→ random tree

→ stepwise addition algorithm
● How do we change such a comprehensive tree to improve 

its score?

Scores can be improved with optimality criteria: least 
squares, minimum evolution, parsimony, maximum 
likelihood
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Building a Random Tree

Seq0
Seq1
Seq2
Seq3
Seq4
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Building a Random Tree
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Randomized Stepwise Addition 
Order Algorithm
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Randomized Stepwise Addition 
Order Algorithm
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Randomized Stepwise Addition 
Order Algorithm
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Seq4

Seq1

Seq3

Seq4

Seq2

Best parsimony insertion score
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Randomized Stepwise Addition 
Order Algorithm
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Randomized Stepwise Addition 
Order Algorithm
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Randomized Stepwise Addition 
Order Algorithm
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Randomized Stepwise Addition 
Order Algorithm

Seq0
Seq1
Seq2
Seq3
Seq4

Seq1

Seq3

Seq4

Seq2

Seq0

Distinct addition order, e.g., 
Seq0→Seq1→Seq2→Seq3→Seq4

can yield a different tree!
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Why are distinct Starting Trees 
useful?

good

bad

Search Space
Search Strategy
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Why are distinct Starting Trees 
useful?

good

bad

Search Space
Search Strategy

This is the drawback of using NJ or UPGMA 
trees as starting trees → only one tree
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The number of trees

Stepwise addition is like following a single 
path through this!

Comprehensive
starting tree
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Random versus Reasonable 
Starting trees

time

Optimality
score reasonable

random
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Search Strategies

● Given a comprehensive tree

● Apply topological alteration mechanisms in some order to improve the score, 
for instance, via

● Hill-climbing
● Simulated annealing
● Some other technique

→ design of ad hoc heuristics
● The three basic moves are:

● NNI: Nearest Neighbor Interchange
● SPR: Subtree Pruning and Re-Grafting
● TBR: Tree Bisection and Reconnection
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NNI
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NNI
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NNI
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NNI
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SPR

T5

T2

T6

T4

T3
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TBR
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TBR
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TBR
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TBR
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TBR
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Question

● How could one design a search algorithm for 
the least squares criterion given a function f() 
and a distance matrix D to compute the least 
squares score on a given tree? 
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The Parsimonator Algorithm

● Build a randomized stepwise addition order parsimony tree
● Apply SPR moves to all subtrees of the current (comprehensive) tree with 

a rearrangement radius of 20
● If the rearrangement of a subtree yields an improved parsimony score, 

keep it immediately 
→ this is somewhat greedy as opposed to a steepest ascent hill climbing algorithm

● Continue applying SPR moves with a radius of 20 to all subtrees until no 
tree with a better parsimony score can be found

● There are much more sophisticated algorithms available
→ TNT tool by Pablo Goloboff

● Keep in mind that parsimony returns discrete scores, that is, there may be 
many equally parsimonious trees among which we can not distinguish!
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Parsimony & Long Branch Attraction

● Because parsimony tries to minimize the number of 
mutations it faces some problems on trees with long 
branches

A C

B D

A

C

B

D

Correct tree

Wrong tree inferred by parsimony

Long branch attraction
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Parsimony & Long Branch Attraction
● Settings under which parsimony recovers the wrong tree are also called “the 

Felsenstein Zone” after Joe Felsenstein who has made numerous very important 
contributions to the field, e.g.

● The Maximum Likelihood model
● The Bootstrapping procedure

● If you are interested in statistics, there are some on-line courses by Joe at 
http://evolution.gs.washington.edu/courses.html 

http://evolution.gs.washington.edu/courses.html
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On-line Resources

● https://cme.h-its.org/exelixis//web/teaching/slides.html 

● At the above page you will find all slides of my regular lecture 
on “Introduction to Bioinformtics for Computer Scientists” 
including many more advanced topics in the area of 
phylogenetic inference 

● You will also find links to youtube recordings of these lectures 
there ! 

https://cme.h-its.org/exelixis//web/teaching/slides.html
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