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Group Setup

● Computational Molecular Evolution group – Heidelberg Institute for 
Theoretical Studies 
– 5 PhD students + 1 staff Scientist
– www.exelixis-lab.org  

● Biodiversity Computing Group – Institute of Computer Science, 
Foundation for Research and Technology Hellas (Crete)
– 3 PhD Students + 3 PostDocs 
– www.biocomp.gr 
– EU ERA chair program 

● Ancient DNA lab – Institute of Biology and Biotechnology,  
Foundation for Research and Technology Hellas (Crete)
–  https://ancient-dna.gr/index.php/en/ 
– 2 PostDocs + 1 lab technician + 1 archaeologist 

http://www.exelixis-lab.org/
http://www.biocomp.gr/
https://ancient-dna.gr/index.php/en/
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Outline

● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Using Phylogenetic Difficulty
● Bootstrap Prediction 
● Other Stuff we work on 



The number of trees

3 taxa → 1 
tree



The number of trees

4 taxa → 3 trees



The number of trees

5 taxa → 15 trees



The number of trees

6 taxa → 105 trees



The number of trees explodes!

BANG !



# possible trees with 2000 taxa



Problem Complexity
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Problem Complexity

search space
heuristic tree 
search strategy

Maximum Likelihood tree searches
 typically end up in local optima

Global maximum
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● Bootstrap Prediction
● Other Stuff we work on 



Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
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Orthology assignment: 
Mostly “dirty” ad hoc methods
→ no widely used uncertainty 
quantification approach



Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
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Tree 
inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Multiple Sequence Alignment: 
Mostly ad hoc methods → 
no widely used uncertainty 
quantification approach, but ...
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Muscle5

Temperature Ensemble Forecast

perturb starting conditions



Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree 
inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Phylogenetic Inference: 
A long history of explicit uncertainty models
Bootstrap Methods for Maximum Likelihood
Posterior Probabilities for Bayesian Inference using MCMC
 



A Tree with Support Values

Taxon 1

Taxon 2

Taxon 3

Taxon 4

80/100



Sources of Uncertainty thus far

1 Orthology Assignment 

2 Multiple Sequence Alignment 

3 Tree Inference 

4 BUT 



Software Issues

● Bugs & Software Quality 
● Numerical Instability 
● Reproducibility (2 versus 4 cores) 
● We re-designed & optimized numerous tools – the 

Next Generation (NG) tools series 
– RAxML-NG

– ModelTest-NG

– EPA-NG

– Lagrange-NG 



Sources of Uncertainty

1 Orthology Assignment 

2 Multiple Sequence Alignment 

3 Tree Inference 

4 Software issues

5 BUT 



Propagating Uncertainty

● Assume 
– 10 alternative orthology assignments 
– 10 x 10 alternative MSAs
– 10 x 10 x 10 alternative trees 

→ exponential explosion with increasing pipeline 
length

→ targeted approach to explore parameter space in 
pipelines needed



Outline

● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Using Phylogenetic Difficulty
● Bootstrap Prediction
● Other Stuff we work on 



Disclaimer

● I never wanted to do machine learning 
● Somebody must keep working on algorithms, 

HPC, hardware architectures, C++
● Current generation of CS students 

“I want to do something with data science 
and/or machine learning” 



Can we predict how difficult a 
phylogenetic analysis will be? 

good scores

bad scores

search space

Global maximum

starting tree 0 starting tree 1
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Phylogenetic Inference

S1 ACGTT
S2 ACCGG
S3 TGGAG
S4 GGCTT

S1

S2

S3

S4

The difficulty of inferring a tree
depends on the shape of the 
multiple sequence alignment

MSA
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Dataset Shapes

Which data is more difficult to analyze? 
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Thousands of sequences, short sequence length

This?
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Dataset Shapes

Which data is more difficult to analyze? 
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Few sequences, long sequence length

Or this? 
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Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences
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Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences

SARS-CoV-2 datasets are difficult !  
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SARS-CoV-2

● Assembled 4 distinct datasets 
● Per dataset 

→ executed 100 independent tree searches
● We use likelihood models

→ determine trees that are not statistically 
significantly different from each other in sets 
of 100 trees
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Results SARS-CoV-2

● For all 4 datasets about 70 out of 100 trees are 
not significantly different from each other with 
respect to their likelihood scores 
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● For all 4 datasets about 70 out of 100 trees are 
not significantly different from each other with 
respect to their likelihood scores

● But, their pair-wise topological differences 
amount to about 70% ! 
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Results SARS-CoV-2

● For all 4 datasets about 70 out of 100 trees are 
not significantly different from each other with 
respect to their likelihood scores

● But, their pair-wise topological differences 
amount to about 70% !

→ extremely weak signal

→ don't draw conclusions from a single tree!

→ summarize the trees via summary statistics! 
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Summarized Trees

SARS-CoV-2 consensus tree colored by country
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Difficulty of an MSA
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S10000

S1
S2
.
.
S10

difficult

easy

This is hand-wavy →can we quantify & predict this? 
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Difficulty Prediction
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Easy
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Difficult

SARS-CoV-2
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What does Difficulty mean? 
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Predicting Difficulty with Pythia

● Pythia = Boosted Tree Regressor
● Supervised Regression Task 

● Predict difficulty between 0 (easy) and 1 (difficult)
● Ground truth difficulty as training target based on 

100 distinct Maximum Likelihood tree inferences
● Initially trained on 4K empirical MSAs

● Mean absolute error: 2.5% 
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Pythia developments

● New release (May 19, 2023) 
● Trained on 12K datasets 

– 11,108 DNA MSAs
–  979 Protein MSAs
–  460 Morphological MSAs

● Two new features 
● Improved accuracy

–     Mean absolute error: 0.07 (previously 0.09)
–     Mean absolute percentage error: 1.7% (previously 2.5%)  
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SARS-CoV-2 data
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PYTHIA Features

Parsimony = 76%



Outline

● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Using Phylogenetic Difficulty
● Bootstrap Prediction
● Other Stuff we work on 
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Using Pythia as End-User

● Prior to tree inference 

→ determine analysis & post-analysis setup 

→ adjust/modify MSA

→ explore data filtering & assembly strategies

→ adjust user/reviewer expectations about data 
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Simulation Study
Using Pythia as Developer
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ML Score as Function of Difficulty
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Adaptive RAxML-NG
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Adaptive RAxML-NG
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Pythia
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Adaptive RAxML-NG Heuristics

● As a function of PYTHIA difficulty modify 

1) number of independent ML tree searches 

2) thoroughness of the searches
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Test Data & Setup

● 9192 empirical MSAs from TreeBase
● 4991 simulated MSAs 
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Difficulty Score Distribution
TreeBase
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Significance Tests
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Distances between trees
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Speedups
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Speedups

Higher search effort 
→ not required
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Speedups

Higher search effort 
→ makes no sense
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Speedups

Overall accumulated speedup over all difficulties approx. 3 on empirical data



Outline

● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Using Phylogenetic Difficulty
● Bootstrap Prediction
● Other Stuff we work on 
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Accelerated Bootstrapping
● Bootstrapping  is compute-intensive

→ Can we predict Bootstrap Support Values via 
Machine Learning ? 

Taxon 1

Taxon 2

Taxon 3

Taxon 4

80/100
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EBG: Educated Bootstrap Guesser
work in progress
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EBG: Educated Bootstrap Guesser

Parsimony again! 
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Run-times

median 
speedup: 8.7
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Accuracy – Simulated Data
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But ...

Accuracy on simulated data from UFBoot2 paper
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Accuracy – Simulated Data
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Empirical Data
● EBG support 

value 
correlations 
with Standard 
Bootstrap 
Supports 

● 220 unseen 
empirical MSAs 
from TreeBase 
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Feature Importance

PBS = Parsimony Bootstrap Support from 200 parsimony bootstraps
PS = Parsimony Support from 1000 parsimony starting trees 

Parsimony: 85%
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Feature Importance

PBS = Parsimony Bootstrap Support from 200 parsimony bootstraps
PS = Parsimony Support from 1000 parsimony starting trees 

Parsimony: 85%

A Renaissance of parsimony as predictor for likelihood?



Outline

● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Using Phylogenetic Difficulty
● Bootstrap Prediction
● Other Stuff we work on 



Simulated Data Suck!

We can distinguish between empirical and simulated MSAs with high accuracy 
using two distinct and independently developed machine learning based 
classification approaches!



Pandora
Work in Progress

Estimating 
Dimensionality 
Reduction 
Stability of 
Genotype Data 
via Bootstrapping 



Language Evolution
Eliminating Subjectivity



Cognate Data

● A cognate dataset 
– relies on a list of concepts
– provides a word for each concept in each language
– selects every-day words describing the concepts precisely (A)
– Is represented by a binary character matrix (B) for the tree 

inference with RAxML-NG



Synonyms

● Synonyms
– distinct words describing the same concept
– e.g. “töten” and “umbringen” both describe the 

concept “to kill” in German

● Traditional recommendation in linguistics: 
Select one (most frequent) synonym only → 
work intensive & subjective choice 



Synonyms

● Synonyms
– distinct words describing the same concept
– e.g. “töten” and “umbringen” both describe the concept “to 

kill” in German

● Traditional recommendation in linguistics: Select one 
(most frequent) synonym only → work intensive & 
subjective choice 

● Can we somehow include all synonyms without any 
subjective choice ? 

● Can phylogenetic likelihood models naturally 
accommodate all synonyms ?



Yes we can

Median of standard Approach → 
synonym sampling

Our new, automated approach

Distances to gold standard
reference tree on 44 datasets



Yes we can

Median of standard Approach → 
synonym sampling

Our new, automated approach

Distances to gold standard
reference tree on 44 datasets



Energy Efficiency

https://github.com/amkozlov/eco-freq  

https://github.com/amkozlov/eco-freq


EcoFreq



EcoFreq
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Biological Field Work
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Biological Field Work

Work on designing improved insect 
barcode analysis pipelines 
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Gene Tree Species Tree 
Reconciliation

● There are other phenomena that complicate 
evolution 
● Gene loss
● Gene transfer 
● Gene duplication 

→ gene tree ≠ species tree
● Infer & correct trees under a joint likelihood model 

comprising the phylogenetic likelihood and a 
reconciliation likelihood model
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GeneRax

● First full and efficient Maximum Likelihood 
implementation to infer gene family trees using 
a given rooted species tree under a joint 
phylogenetic & reconciliation likelihood model 
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SpeciesRax

● Goal: Simultaneously infer the gene family 
trees and the species tree under a joint 
phylogenetic/reconciliation likelihood model 
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AleRax

● Uses concept of amalgamated likelihoods → 
requires posterior per-gene tree set as input :-( 

● https://github.com/BenoitMorel/AleRax 

https://github.com/BenoitMorel/AleRax
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Software Quality Assessment

● SoftWipe tool for automatic scientific software 
quality assessment (C and C++)
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Tournament Prediction
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Tournament Prediction



Thank you for your attention

Listaros village, Crete
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Definition of Difficulty



102

Prediction Features

● Eight Features
● 4 MSA attributes

– Sites-over-taxa
– patterns-over-taxa 
– % gaps
– % invariant sites

● 2 MSA information metrics
– Shannon entropy
– Bollback multinomial test statistic

● 2 Parsimony-tree-based features
– Infer 100 parsimony trees 

→ average RF-Distance

→ % unique topologies
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