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Outline

 
● Our Approach to Bioinformatics
● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Other stuff we are working on  
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Bioinformatics
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Bioinformatics

tool2 tool3

Data-centric: pipeline building

tool1
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tool2 tool3

Data-centric: pipeline building

tool1

tool2 tool3

Method-centric: tool building

tool1
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Our Approach

● Focus on core tool, model, algorithm, and 
method development 

● Method development better fits the research 
interests of a computer scientist 

● Goal: Enable Research in Evolutionary Biology
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Our Approach

● Focus on core tool, model, algorithm, and 
method development 

● Method development better fits the research 
interests of a computer scientist 

● Goal: Enable Research in Evolutionary Biology
● Nonetheless, we often conduct data centric 

research in side projects  
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A phylogeny

Taxon 5Taxon 3

Taxon 4

Taxon 1

Taxon 2

Phylogenies describe evolutionary relationships among species

Hypothetical common ancestors



  

A phylogeny

Taxon 5Taxon 3

Taxon 4

Taxon 1

Taxon 2 Extant species



  

A phylogeny

Taxon 5Taxon 3

Taxon 4

Taxon 1

Taxon 2

Phylogenetic trees are unrooted binary trees!



  

Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4



  

Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

RAxML
RAxML-NG

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Our main contribution to the field 



  

How many unrooted 4-taxon trees 
exist?
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How do we chose among them?
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We need scoring criteria!
The currently most widely used criterion is (maximum) likelihood → 
How likely is it that the tree, given a model of evolution, generated
the observed data?  

Score: 1.0

Score: 2.0Score: 3.0A

Maximum Likelihood tree



  

The number of trees

3 taxa → 1 tree



  

The number of trees

4 taxa → 3 trees



  

The number of trees

5 taxa → 15 trees



  

The number of trees

6 taxa → 105 trees



  

The number of trees explodes!

BANG !



  

# possible trees with 2000 taxa
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Problem Complexity

good scores

bad scores

search space
heuristic tree 
search strategy

Global maximum
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Problem Complexity

good scores

bad scores

search space
heuristic tree 
search strategy

Finding the best tree under Maximum Likelihood is NP-hard!

Global maximum
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Problem Complexity

search space
heuristic tree 
search strategy

Maximum Likelihood tree searches
 typically end up in local optima

Global maximum
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Starting Trees

good scores

bad scores

search space

Global maximum

starting tree 0
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Starting Trees

good scores

bad scores

search space

Global maximum

 starting tree 1
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Main Prior Contributions

● Efficient tree search algorithms 
● Low-level hardware-aware optimization of likelihood calculations 

(95% of total execution time) 
● Algorithmic optimization of likelihood calculations
● Parallelization for analysis of large genomic datasets

● Optimal data distribution
● Optimization of parallel I/O  

● Dedicated Supercomputer Versions 
● ExaML
● ExaBayes 

● Support, Maintenance, Extension 

Gene 0 Gene 1 Gene 4Gene 3Gene 2
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Main Prior Contributions

● Efficient Search Algorithms 
● Low-level hardware-aware optimization of likelihood calculations (95% of 

total execution time) 
● Algorithmic optimization of likelihood calculations
● Parallelization for analysis of large datasets

● Optimal data distribution
● Optimization of parallel I/O  

● Software for Supercomputers
● RAxML-NG - scales from the laptop to the supercomputer  
● ExaBayes - Bayesian inference on extremely large datasets

●  Support, Maintenance, Extension

Support, Maintenance, Extension 
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Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Orthology assignment: 
Mostly “dirty” ad hoc methods
→ no widely used uncertainty 
quantification approach



  

Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Multiple Sequence Alignment: 
Mostly ad hoc methods → 
no widely used uncertainty 
quantification approach, but ...



  

Muscle5



  

Muscle5



  

Muscle5

Temperature Ensemble Forecast



  

Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Phylogenetic Inference: 
A long history of explicit uncertainty models
Bootstrap Methods for Maximum Likelihood
Posterior Probabilities for Bayesian Inference using MCMC
 



  

A Tree with Support Values

Taxon 1

Taxon 2

Taxon 3

Taxon 4

80/100



  

Sources of Uncertainty

1) Orthology Assignment 

2) Multiple Sequence Alignment 

3) Tree Inference 

4) BUT 



  

Software Issues

● Bugs & Software Quality 

● Numerical Instability 

● Reproducibility

● We re-designed & optimized numerous tools – the Next 
Generation (NG) tools series 

● RAxML-NG
● ModelTest-NG
● EPA-NG

● Lagrange-NG 



  

Sources of Uncertainty

1) Orthology Assignment 

2) Multiple Sequence Alignment 

3) Tree Inference 

4) Software issues

5) BUT 



  

Propagating Uncertainty

● Assume 

● 10 alternative orthology assignments 
● 10 x 10 alternative MSAs
● 10 x 10 x 10 alternative trees 

→ exponential explosion with increasing pipeline 
length

→ intelligent ways to explore parameter space in 
pipelines needed
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Can we predict how difficult a 
phylogenetic analysis will be? 

good scores

bad scores

search space

Global maximum

starting tree 0 starting tree 1
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Phylogenetic Inference

S1 ACGTT
S2 ACCGG
S3 TGGAG
S4 GGCTT

S1

S2

S3

S4

The difficulty of inferring a tree
depends on the shape of the 
multiple sequence alignment

MSA
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Dataset Shapes

Which data is more difficult to analyze? 

S1
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.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
S10000

Thousands of sequences, short sequence length

This?
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Dataset Shapes

Which data is more difficult to analyze? 

S1
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.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
S10000

S1
S2
.
.
S10

Few sequences, long sequence length

Or this? 
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Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences

S1
S2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
S10000



52

Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences

SARS-CoV-2 is such a difficult dataset; it even exhibits some 
additional difficulties: 
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Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences

SARS-CoV-2 is such a difficult dataset; it even exhibits some 
additional difficulties:

1. Due to the low mutation rate (rate at which nucleotides change)
sequences are very similar to each other 
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Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences

SARS-CoV-2 is such a difficult dataset; it even exhibits some 
additional difficulties:

1. Due to the low mutation rate (rate at which nucleotides change)
sequences are very similar to each other 

2. The genome is ≈ 30,000 nucleotides long, but the sequences 
differ in only 1500-2000 positions → highly similar
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Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences

SARS-CoV-2 is such a difficult dataset; it even exhibits some 
additional difficulties:

1. Due to the low mutation rate (rate at which nucleotides change)
sequences are very similar to each other 

2. The genome is ≈ 30,000 nucleotides long, but the sequences 
differ in only 1500-2000 positions → highly similar

3. The input sequences are not from distinct species!
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Consequences

● SARS-CoV-2 data 
● Extremely hard to infer a reliable tree 
● Numerical issues with tree inference tools because 

the sequences are so closely related
● Post-analyzing the tree (e.g., determining the root, 

identifying virus sub-classes) appears to not be 
feasible using computational tools 
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Consequences

● SARS-CoV-2 data 
● Extremely hard to infer a reliable tree 
● Numerical issues with tree inference tools because 

the sequences are so closely related
● Post-analyzing the tree (e.g., determining the root, 

identifying virus sub-classes) appears to not be 
feasible using computational tools 

For details, see: Benoit Morel, Pierre Barbera, Lucas Czech, Ben Bettisworth, Lukas Hübner, 
Sarah Lutteropp, Dora Serdari, Evangelia-Georgia Kostaki, Ioannis Mamais, 
Alexey Kozlov, Pavlos Pavlidis, Dimitrios Paraskevis, Alexandros Stamatakis. 
"Phylogenetic analysis of SARS-CoV-2 data is difficult", Molecular Biology and Evolution 2021
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Phylogenetic Inference

● Assembled 4 distinct input datasets 
● Per input dataset → executed 100 tree 

searches
● As we use likelihood models, we determined 

the trees that are not statistically significantly 
different from each other per set of 100 trees



59

Results

● For all input datasets about 70 out of 100 trees 
are not significantly different from each other 
with respect to their likelihood scores 
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● For all input datasets about 70 out of 100 trees 
are not significantly different from each other 
with respect to their likelihood scores

● But, their pair-wise topological differences 
(difference in tree shapes) amount on average 
to 70% ! 
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Results

● For all input datasets about 70 out of 100 trees are 
not significantly different from each other with 
respect to their likelihood scores

● But, their pair-wise topological differences 
(difference in tree shapes) amount on average to 
70% !

→ extremely weak signal

→ don't draw conclusions from a single tree!

→ try to summarize the trees via summary statistics! 
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Summarized Trees

SARS-CoV-2 consensus tree colored by country
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Difficulty of an MSA

S1
S2
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.
S10000

S1
S2
.
.
S10

difficult

easy
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Difficulty of an MSA

S1
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.
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.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
S10000

S1
S2
.
.
S10

difficult

easy

This is very hand-wavy →can we quantify & predict this 
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Difficulty Prediction
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Easy
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Difficult
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What does Difficulty mean? 
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Predicting Difficulty with Pythia

● Pythia = Boosted Tree Regressor
● Supervised Regression Task 

● Predict difficulty between 0.0 (easy) and 1 (difficult)
● Ground truth difficulty as training target based on 

100 distinct Maximum Likelihood tree inferences
● Trained on 4K empirical MSAs

● Mean absolute % error: 2.5% 
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Definition of Difficulty
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Prediction Features

● Eight Features
● 4 MSA attributes

– sites-over-taxa, patterns-over-taxa, % gaps, % invariant 
sites

● 2 MSA information metrics
– Shannon entropy, Bollback multinomial test statistic

● 2 Parsimony-tree-based features
– Infer 100 parsimony trees → average RF-Distance, % 

unique topologies



72

SARS-CoV-2 Example
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Using Pythia

● Prior to tree inference 

→ determine analysis & post-analysis setup 

→ adjust/modify MSA 

→ adjust user expectations  about data 



74

Pythia developments

● Next release
● Trained on 12K datasets (automatic re-training) 
● Additional features 

● Deploy to inform tree search heuristics 
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Adaptive RAxML-NG
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Adaptive RAxML-NG
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Pythia



78

Adaptive RAxML-NG Heuristics

● We modify as a function of difficulty
● the number of ML tree searches 
● the thoroughness of the search

● And introduce an additional tree search 
mechanism
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Test Data & Setup

● 10K empirical MSAs from TreeBase

→ 9192 MSAs after filtering 
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Test Data & Setup

● 10K empirical MSAs from TreeBase

→ 9192 MSAs after filtering 
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Difficulty Score Distribution
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Significance Tests
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Distances between trees
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Speedups
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Speedups

Overall accumulated speedup: approx. 3 on empirical data



86

Outline

 
● Our Approach to Bioinformatics
● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Other stuff we are working on  



87

Scalability
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Single Cell Evolution

● Reconstructing the evolution, e.g., of cancer 
cells in a single patient is challenging
● Noisy data 
● Erroneous data 
● Little signal 
● Few & simplistic models 



89

Phylogenetic Networks

● Evolution does not need to occur in a tree-like 
manner due to recombination events 

● We can model this via so-called phylogenetic 
networks 



90

Phylogenetic Networks

● Evolution does not need to occur in a tree-like 
manner due to recombination events 

● We can model this via so-called phylogenetic 
networks

● The likelihood of such a network is substantially 
more difficult to compute than on a tree

→ computational challenges  
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Gene Tree Species Tree 
Reconciliation

● There are other phenomena that complicate 
evolution 
● Gene loss
● Gene transfer 
● Gene duplication 

→ gene tree ≠ species tree
● Infer & correct trees under a joint likelihood model 

comprising the phylogenetic likelihood and a 
reconciliation likelihood model
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GeneRax

● First full and efficient Maximum Likelihood 
implementation to infer gene family trees using 
a given rooted species tree under a joint 
phylogenetic & reconciliation likelihood model 
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SpeciesRax

● Goal: Simultaneously infer the gene family 
trees and the species tree under a joint 
phylogenetic/reconciliation likelihood model 
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Parallel Fault Tolerance

● Parallel computations on thousands of cores are 
likely to fail due to failing hardware components 

● This applies to tightly coupled massively parallel 
codes in general and to RAxML-NG in particular 

● Goal: Devise generic and RAxML-NG specific 
strategies for fault tolerance of massively parallel 
codes 
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Tournament Prediction
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Software Quality Assessment

● SoftWipe tool for automatic scientific software 
quality assessment (C and C++)
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Empirical Software Engineering with 
SoftWipe
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Biological Field Work
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Energy Efficiency
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Ancient DNA

● Better tools for ancient DNA analyses 
● Classic aDNA data analyses



101

Thank you for your attention
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Pipeline Complexity



  

Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

single gene &
few species

Sequence 
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T3 ACGG
T4 AAGC
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T2 ACC-
T3 ACGG
T4 AAGC

Sequence → Align 



  

Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

T3 T4

T2T1

Sequence → Align →   Infer Tree   



  

Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

T3 T4

T2T1

Sequence → Align →   Infer Tree  → Publish   



  

Project Complexity Today

150 insect transcriptomes 50 bird genomes



  

Project Complexity Today



  

Project Complexity Today

What if there is just 
one bug here?



  

Project Complexity Today

Probability of bugs 
increases!



  

Project Complexity Today

Scripts, wrappers, etc. written
by a plethora of researchers in 
a large number of languages: 

perl, python, C, C++, JAVA, etc.



  

The 'crappy' software project

● Analyzed 15 widely-used evolutionary biology tools ≈ 
65,000 citations

● Analyses performed
● Compiled with gcc and clang with all warnings enabled

● Memory check with valgrind 

● Checked if assertions are used via assert()
● Analyzed degree of code duplication

● Caution: “bad” quality does not induce that a tool is faulty, 
but the probability of it being faulty is higher!



  

SoftWipe

● Discussion with Science Journalist - “Can this process be 
automated?” 

● Development of SoftWipe - An automated tool and benchmark 
for relative quality ranking of scientific software

● Ranking of 51 open source tools written in C or C++ from a wide 
range of research areas

● Astrophysics 

● Computer Science 

● Bioinformatics



  

SoftWipe 
Benchmark



  

SoftWipe 
Benchmark

Does not change over time as more tools are added → 
can easily be referenced



  

SoftWipe 
Benchmark

Does change over time as more tools are added → 
Difficult to be referenced



  

SoftWipe 
Benchmark

Written by computer
scientists



  

SoftWipe 
Benchmark

My lab



  

SoftWipe 
Benchmark

Astrophysics



  

SoftWipe 
Benchmark

Tools with highly similar functionality



  

SoftWipe 
Benchmark

Tools with highly similar functionality



  

SoftWipe 
Benchmark

Covid simulation tool



  

SoftWipe in Practice

● Leads to healthy competition among lab members → everyone 
wants to write the cleanest code 

● Used by researchers inside and outside of the lab during the 
development process → potential bugs identified and avoided 

● Used as teaching tool in programming practicals 

● SoftWipe score already used by us and others in Bioinformatics 
software paper submissions 

● Vision: Establish software quality indicators as a necessary 
prerequisite for software paper submissions 



  

Software Quality and Maintainability

● The Next Generation (-NG) projects:

● Re-design, re-factoring, from scratch re-implementation of 
flagship tools to ensure maintainability, sustainability, and 
extensibility & increase scalability/performance 

● ModelTest-NG – model testing of 
evolutionary models for phylogenetic 
inference 

● RAxML-NG – phylogenetic inference 
● EPA-NG – phylogenetic placement of environmental 

reads



  

Energy Efficiency
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Innovations

480x speedup

4x speedup

30x speedup

~1000x speedup

Oh, wow, this will help save a lot of energy!
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The Jevons Paradox

480x speedup

4x speedup

30x speedup

~1000x speedup

W. S. Jevons „The Coal Question“ (1865)

Improved efficiency

Lower cost

Increased consumption
rate
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The Jevons Paradox

480x speedup

4x speedup

30x speedup

~1000x speedup

We need an alternative solution!



  

Energy monitoring: RAxML-NG

● New in RAxML-NG v1.0: energy usage report  

Elapsed time: 42846.287 seconds

Consumed energy: 162370.469 Wh (= 812 km in an electric car, or 4059 km with an e-scooter!)

Single tree search (96 nodes x 12h): 
>160 kWh



  

Energy Saving Mode in RAxML-NG v1.0

v1.0+ v0.9

-30%

default:



Phylogenetic Inference: Energy as a 
function of CPU clock frequency

Runtime x node power



Phylogenetic Inference: Energy as a 
function of CPU clock frequency

Computation is 
memory bandwidth 
bound and not CPU 
bound
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