Computational Reproducibility

by example of phylogenetic inference
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Focus of This Lecture

 Computational Reproducibility

- If I run a program with the same parameters n times
will | always get the same results?

* We will not cover topics such as

* Archiving, storing, and sharing the data
* Providing scripts for reproducing results and figures

* | will tell you a story of all the things that have gone
wrong over the years — Murphy’s law

Anything that can go wrong will go wrong



Outline

* The root of all evil

* Seqguential Computations
* Parallel Computations

* Software Quality



Floating Point Numbers

 Machine numbers are an imperfect mapping of the infinite real
numbers to a finite number of machine values!
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Imperfect Mapping - Examples

Double precision numbers (64 bits)

* Sign bit: 1 bit

* Exponent: 11 bits

 Significand precision: 53 bits (52 explicitly stored)
252 + 0.2 = 252 (next number after 252 |s 252 + 1)
1+ 1/25% =1 (next number after 1 + 1/252)

Between 2" and 2n+1 there are always 252 values
that are evenly spaced !




Statistics

* In most lectures of this course we deal with
statistical computations

- on the computer we need to use floating
point values to represent probabilities



Felsenstein pruning
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Felsenstein pruning

Values get smaller and
smaller to as we
approach the virtual root
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Numerical Underflow

Conditional likelihood values become so
' small that they can not be represented on a
' computer any more — underflow !!!!
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Overflow & Underflow

Negative Positive
Underflow Underflow
Negative Expressible Expressible Positive
Overflow Negative Numbers Positive Numbers  Overflow

/
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IEEE 754 standard for 32-bit floating point numbers
1 bit sign

8 bits  exponent

23 bits  significand



Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root




Post-order Traversal
preventing underflow

We need to apply
numerical scaling techniques
to avoid underflow!

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root -

this needs to be
handled!




Post-order Traversal

preventing underflow
~ Typical approach Y
1) Check if values are too small
2) If so multiply with some large number
3) Undo those scaling multiplications (somehow) in the end
4) for likelihood this undoing is easy

\/ /A

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root -

this needs to be
handled!




What went wrong?

* For DNA models without rate heterogeneity this scaling approach worked fine

- check if all 4 conditional likelihoods at a given CLV and site are smaller
than a minimum & multiply with large number

* For DNA models with rate heterogeneity this doesn’t always work

- Jointly checking that all 216 conditional likelihoods for the 4 typical discrete
rates are smaller than a minimum doesn’t work

— the spread of the values is too large because of the distinct rate categories
— scale individually per rate category

- higher computational cost
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> BMC Bioinformatics. 2011 Dec 13;12:470. doi: 10.1186/1471-2105-12-470

Algorithms, data structures, and numerics for
likelihood-based phylogenetic inference of huge
trees

Fernando izquierdo-Carrasco !, Stephen A Smith, Alexandros Stamatakis

Affiliations + expand
PMID:; 22165866 PMCID: PMC3267785 DO 10.1186/1471-2105-12-470
Free PMC article



What went wrong?

We know that likelihood claculations are compute- and
memory-intensive

So why not use single-precision (32 bit) instead of
double precision (64 bit) floating point values?

Numerics for Maximum Likelihood break down

10-fold increase In scaling multiplications when using

single precision
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Accuracy and Performance of Single versus Double Precision
Arithmetics for Maximum Likelihood Phylogeny
Reconstruction

Simon A Berger & Alexandros Stamatakis

Conference paper

958 Accesses | 4 Citations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 6068)



Felsenstein pruning

P(t) = e¥is numerically

not easy
3 T L L _
Ly(@) = (D7 Pas(bi)Lg () ( D Pas(bi)Ly’ (@)
£ S=A
LK) e
P(b_i) 9 PO
ACGT ACGT
A A
C C
S b_| bj T
P(A)
L A(i P(C) Egg -
0 = 8 LA

16

~ Position ¢



Felsenstein pruning

P(t) = e“is numerically
not easy

SIAM REVIEW
Vol. 20, No. 4, October 1978

Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involving

(© Society for Industrial and Applied Mathematics
0036-1445/78/2004-0031%01.00/0

NINETEEN DUBIOUS WAYS TO COMPUTE
THE EXPONENTIAL OF A MATRIX*

CLEVE MOLERT AND CHARLES VAN LOANi}

LY ()

[ =

approximation theory, differential equations, the matrix eigenvalues, and the matrix characteristic poly- J)

nomial have been proposed. In practice, consideration of computational stability and efficiency indicates

that some of the methods are preferable to others, but that none are completely satisfactory.
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What went wrong?

In RAxML we used the matrix exponential function from the book -
Numerical Recipees in C

Uses Eigenvector/Eigenvalue decomposition

Especially the Intel icc compiler tended to be very aggressive when
trying to optimize this function

- numerical breakdown
Solution
eigen.o : eigen.c $(GLOBAL_DEPS)

$(CC) —-c —-o eigen.o eigen.c

Compile eigenvector decomposition function without optimization
flags
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Are you occasionally using PCA?

* Principal Component Analysis

* Also relies on Eigenvector/Eigenvalue
decomposition —» beware !!!!
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Consider that you only want to compute this triplet of conditional
likelinood vectors of fixed length n.

L™N0), L)), P(b_i), P(b_j) are given as input and you just compute
L"(k) as output of a micro-benchmark.

What do you expect the run-times to be if you just provide
different input vectors L”(i)’, L”\(j)’ but again of length n?

)
)LS (o Z Pas(bj)Lg’ ()
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What went wrong?

* When developing phylogenetic placement
methods, we observed some inexplicable run
time deviations of about 50% for exactly this
operation

* It didn’t make any sense since we executed n
times the exact same arithmetic operations, just
on different input data

- until we learned about de-normalized floating
point values
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Denormalized Floating Point
Numbers

Not all real numbers
in the range are representable

= N-ma;-r - Mi.ﬁil'l +Hf:‘iin +N:ﬂa:-:
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Denormalized floating-point numbers

Intended to allow for gradual underflow to zero

When de-normalized values are encountered, the processing cost inside the CPU
for multiplications and additions is increased.

- the runtimes are input data dependent !
— Problem with reproducibility of run time performance benchmarks
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Denormalized Numbers

* De-normalized floating point numbers and their impact on run-times and
performance benchmark

* J. Bjorndalen, O. Anshus: “Trusting floating point benchmarks-are your
benchmarks really data-independent?” Applied Parallel Computing.
State of the art in Scientific Computing 2010; pp 178-188, Springer.

* Alexandre F. Tenca, Kyung-Nam Han, David Tran: “Performance
Impact of Using Denormalized Numbers in Basic Floating-point
Operations” IEEE, Forty-First Asilomar Conference on Signals,
Systems and Computers, 2007.

* The concrete example with Conditional Likelihood Vector computations

that yielded highly diverging run times due to de-normalized floating point
numbers can be found here

https://github.com/stamatak/denormalizedFloatingPointNumbers
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https://github.com/stamatak/denormalizedFloatingPointNumbers

The story so far

* Flaoting point number are an imperfect mapping
of the real numbers to machine numbers

e All sorts of numerical instabilities can arise

* There can be In issue when trying to reproduce
performance results

* _ Distinct processor types (hardware
architectures) may be handling denormalized
floating point numbers differently!
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Does weird stuff only happen for
floating point?

* It is more likely to happen

— Wwith integer arithmetic there exists an exact mapping of
iIntegers to machine numbers

- however overflow can still occur !!!

* But what if the same integer random number seed yields a
different series of random numbers ???

e We need random numbers a lot in our tools

e Specifying a random number seed should normally
guarantee that the same sequence of random numbers is
generated - reproducibility of results!!!

25



What went wrong?

A Critical Assessment of Storytelling: Gene Ontology Categories
and the Importance of Validating Genomic Scans

Pavios Pavlidis, ™’ jeffrey D. ]Enmn.‘}' Wolfgang Stephan.* and Alexandros Stamatakis'

* We were not able to reproduce our own results
on a different machine!!!

* Any ideas?

26



What went wrong?

A Critical Assessment of Storytelling: Gene Ontology Categories
and the Importance of Validating Genomic Scans

Pavios Pavlidis,*' Jeffrey D. Jensen,’ Woligang Stﬁphan,i and Alexandros Stamatakis'

* We were not able to reproduce our own results on a different
machine!!!

* Any ideas?

* The constant changes in computer architectures, compilers, and
scientific libraries further complicate the reproducibility of
experiments. For example, in the current analysis, MaCS (v.0.4c)
produced different results when using identical random number
seeds but different versions of the boost library (www.boost.org,
v1.33 and v1.40) because of code changes in the random
number generator implementation (supplementary section X,
Supplementary Material online). We observed this behavior by

pure chance ...

27


http://www.boost.org/

Take Home Message

e Strict version control !

* Not only control the version of the code you
used but also of the external libraries it relies

upon

* |deally, don'’t rely on external libraries when
developing own code !

28



Compiler Optimization
What went wrong?

JOURNAL ARTICLE ACCEPTED MANUSCRIPT

Lagrange-NG: The next generation of Lagrange @

Ben Bettisworth =, Stephen A Smith, Alexandros Stamatakis

Systematic Biology, syad002, https://doi.org/10.1093/sysbio/syad002
Published: 27 January 2023  Article history v

We recently re-designed/re-wrote the popular Lagrange biogeography tool
Initially, we were very excited as we easily got 10-fold speedups
It turned out that:

“we identified and corrected a configuration error in the process of building Lagrange,
where important compiler optimization options were not properly utilized. Fixing this
configuration error alone increased the computational efficiency of the original
Lagrange by up to 10x. While this error is easy to overlook, yet trivial to fix, we assume
that many past Lagrange analyses were conducted using the unoptimized code”

Lagrange was being distributed in unoptimized form (without the —02 flag) for many
years!

29
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Floating Point
The Root of All Evil

Computational science mostly relies on floating-point intensive codes
How do we verify these codes?

* Numerical instabilities
* Unstable run-time performance benchmarks
* Distinct round of error propagation

We stand on shaky grounds

Scientists using those codes assume numerical results are exact
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Reproducibility — no surprises

nature communications

Explore content ~  About the journal ~+  Publish with us +

nature » nature communications » articles » article

Article | Open Access | Published: 30 November 2020

Aninvestigation of irreproducibility in maximum
likelihood phylogenetic inference

Xing-Xing Shen =], Yuanning Li, Chris Todd Hittinger, Xue-xin Chen & Antonis Rokas 1

Nature Communications 11, Article number; 6096 (2020) | Cite this article

7268 Accesses | 10 Citations | 53 Altmetric | Metrics
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Outline

The root of all evil
“Sequential” Computations
Parallel Computations
Software Quality
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Assoclativity

X y Floating point round-off errors 4
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Reproducibilty

* Under floating point
(a+b)+cza+(b+c)
— Order of operations will affect the result
— round off errors due to imperfect representation of real numbers
will propagate differently

* Manual code optimization or automatic code optimization with compilers (gcc -02 flag, for
instance) always assumes that

(a+b)+c=a+(b+c)

— Same code, same input, same options, at different optimization levels can yield different
results

— Same code, same input, same options, run on a distinct CPU architecture can yield
different result

— on GPUs this is even more likely to happen
- for instance, we couldn’t get Lagrange-NG to run in a numerically stable way on a GPU
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Felsenstein pruning

There are numerous ways to re-order
these associative computations!
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An Example:
Post-order Traversal

Different virtual root placements
also change the order of operations

virtual root

|
N\
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Post-order Traversal

AN
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Post-order Traversal

AN



Post-order Traversal

AN
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Post-order Traversal

In which order do we actually optimize the branch lengths by the way?

a
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More Re-Ordering:
Repeating Patterns

Identical values, two times pattern AG
CLVv /
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Repeating Patterns

Detect identical patterns and omit second computation
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Repeating Patterns

Also, shorten CLV - less memory required
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Repeating Patterns

Also, shorten CLV - less memory required

CLV
A....A... G..G..

Challenge: Efficient data structure to
detect & store repeats
Up to 10-fold run-time improvements
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Repeating Patterns

Also, shorten CLV - less memory required

Challenge: Efficient data structure to
detect & store repeats
Up to 10-fold run-time improvements

CLVv
A....A... G..G..

Analysis options:
run mode: ML tree seaich
start tree(s): random (1@) + parsimony (18)
random seed: 1657272853
tip-inner: OFF
pattern compression: ON
per-rate scalers: OFF

site repeats: ON

fast spr radius: AUTO

spr subtree cutoff: 1.066600

branch lengths: proportional (ML estimate, algorithm: NR-FAST)
SIMD kernels: AVX2

parallelization: coarse-grained (auto), PTHREADS (auto)




Reproducibilty

* Under floating point
(a+b)+cza+(b+c)

— Order will affect the result — distinct round off error
propagation

* Sequential execution:

* Tree inference might yield different trees if you use different
compiler

* Tree inference might yield different trees if you use SSE3 (128
bits) or AVX (256 hits)

 \We have observed this on real data !
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Vector Instructions

=, parallelism within a single CPU

48



Vector Instructions

parallelism within a single CPU

 Vector Architectures: SSE3, AVX, AVX-512

* Execute the same operation simultaneously on more than one
value/datum

49



Vector Instructions

parallelism within a single CPU

 Vector Architectures: SSE3, AVX, AVX-512

* Execute the same operation simultaneously on more than one
value/datum

 GPUs are also just vector processors!
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Vector Instructions

e RAxXML-NG SSE3 & AVX versions

A clock tick: execute one instruction

e 2.2 GHz: 2.2 * 10"9 instructions per second

o1

a 0123
_|_

b 0123

C0246
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Vector Instructions

RAXML-NG SSE3 & AVX versions
A clock tick: execute one instruction

2.2 GHz: 2.2 * 10"9 instructions per second

a 0123

n This operation will require 4 clock
ticks.

b 0123 Now, if we have a vector unit of

size/width two.

C0246




Vector Instructions

RAXML-NG SSE3 & AVX versions

A clock tick: execute one instruction

53

2.2 GHz: 2.2 * 10"9 instructions per second

a0l

23

Do this operation simultaneously
within one cycle

46




Vector Instructions

e RAxML-NG SSE3 & AVX versions
A clock tick: execute one instruction

e 2.2 GHz: 2.2 * 10"9 instructions per second

a 0123
... and this operation

1 simultaneously within one cycle:
b 0123 only two clock cycles (ticks)

required

C0246
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Time permitting: Live demo

We can also use vector instructions for parsimony calculations

Check https://github.com/stamatak/Parsimonator-1.0.2
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https://github.com/stamatak/Parsimonator-1.0.2
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Vector Instructions

Standard architectures (x86)

* vector widths of 128 or 256 bits
 As of 2017: 512 bit instructions on Intel CPUs
GPUs: at least one order of magnitude larger vectors

Vector instructions are synchronized automatically by the processor
clock = no synchronization overhead :-)

Always use vectorized versions of programs !



Horizontal Add

« Sometimes we need to sum over the values In
a vector horizontally — we call this a horizontal
add

— different round off error propagation
depending on vector width
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Horizontal Add

* Sometimes we need to sum over the values In
a vector horizontally — we call this a horizontal

add

— different round off error propagation

depending on vector width

—€-

58

0246—

Sum over this values in the vector
— could be per-site log likelihoods



Horizontal Add

« Sometimes we need to sum over the values In
a vector horizontally — we call this a horizontal
add

— different round off error propagation
depending on vector width

—&-6%.4_6__» =(0+2)+(4+6)
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Horizontal Add

« Sometimes we need to sum over the values In
a vector horizontally — we call this a horizontal
add

— different round off error propagation
depending on vector width

—&-6%.4_6__» =(0+4)+(2+6)
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Horizontal Add

« Sometimes we need to sum over the values In
a vector horizontally — we call this a horizontal
add

— different round off error propagation
depending on vector width

—€-06246—>» =0+(@+(2+6))
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Reproducibilty

* Under floating point
(a+b)+c#a+(b+c)
— Order will affect the result — distinct round off error propagation

e Sequential execution:

* Tree inference might yield different trees if you use different compiler

* Tree inference might yield different trees if you use SSE3 (128 bits) or
AVX (256 bits)

* We have observed this on real data !
* If the dataset is difficult this is more likely to happen!
- difficulty prediction with Pythia
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Dataset Shapes

Badly shaped

18,000 bp
116,000 taxa

Orangutan
Gorilla

Chimp

Homo Sapiens

AACGTTTT-
AAGGTTT --
A-GGTTTT-
AGGATTTTT

Well shaped

—

20,000,000 bp
1500 taxa



Easy & Difficult Likelihood
Surfaces

badly
shaped
well
shaped
Trees Trees
l
Rough likelihood surface: Smooth likelihood surface:

many taxa, few bp Few taxa, many bp



Easy & Difficult Likelihood
Surfaces

Hard to distinguish between peaks: statistically & numerically

badly
shaped
A
well
shaped
Trees Trees
l
Rough likelihood surface: Smooth likelihood surface:

many taxa, few bp Few taxa, many bp



Easy & Difficult Likelihood
Surfaces

badly
shaped

well
shaped

Trees Trees

l

7764 taxa, 1 gene 125 taxa, 34 genes
Inferred 20 ML trees Inferred 20 ML trees



Easy & Difficult Likelihood
Surfaces

Average RF: 34%

badly Average RF: 0.5%
shaped / \ J i
JL well
shaped
I @

7764 taxa, 1 gene 125 taxa, 34 genes
Inferred 20 ML trees Inferred 20 ML trees



Now we can quantify this

e In past years these slides about easy and hard datasets were
very hand-wavy

e Since 2022 we can quantify & predict difficulty

JOURNAL ARTICLE

From Easy to Hopeless—Predicting the Difficulty of
Phylogenetic Analyses @

Julia Haag ™, Dimitri Hohler, Ben Bettisworth, Alexandros Stamatakis

Molecular Biology and Evolution, Volume 39, Issue 12, December 2022, msac254,

https://doi.org/10.1093/molbev/msac254
Published: 17 November 2022



Predicting Dataset Difficulty

Pythia tool to predict difficulty of phylogenetic analysis
Input: MSA
Output: a difficulty value ranging between 0.0 (easy) to 1.0 (hopeless)

Invocations for our example datasets:

pythia —--msa 125.phy —--raxmlng ~/bin/raxml-ng
pythia —--msa 7764.phy —--raxmlng ~/bin/raxml-ng

There seems to be a good correlation between the difficulty score and the average
bootstrap support values

Also, “apparent convergence” speed of MCMC analyses can potentially be predicted

A small SARS-CoV-2 dataset we analyzed 2 years ago has a difficulty score of 0.84
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Easy & Difficult Likelihood
Surfaces

Difficulty: 0.63

badly Difficulty: 0.14
shaped “////// \\\\\\\“ /

JL well
shaped
I Trees

7764 taxa, 1 gene 125 taxa, 34 genes
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Difficulty Distributions

Htrees
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RAXML-Grove Database
TreeBase Database
Easy = » Hopeless Easy = » Hopeless
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Why does difficulty matter for
reproducibility?

SSE3 AVX
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Why does difficulty matter for
reproducibility?

SSE3 AVX
555555 4 /
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Why does difficulty matter for
reproducibility?
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Outline

* The root of all evil

* Seqguential Computations
* Parallel Computations
* Software Quality
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Reproducibilty

* Under floating point
(a+b)+c#a+(b+c)

— Order will affect the result — distinct round off
error propagation

* Parallel execution: tree inference might yield
different trees Iif you use 2 or 4 cores for parallel
likelihood calculations

We have observed this on real data !
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Felsenstein pruning (again)
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Loop Level Parallelism

virtual root

4
N\
N\
N\

PLi] = £(Q[il, R[i])
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Loop Level Parallelism

virtual root

This operation uses = 90% of total
execution time !

PLi] = £(Q[il, R[i])
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Loop Level Parallelism

virtual root

This operation uses = 90% of total
execution time !
— simple fine-grained parallelization

PLi] = £(Q[il, R[i])
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Loop Level Parallelism

virtual root

4
N\
N\
N\
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Loop Level Parallelism

virtual root

\g
N\

N
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Loop Level Parallelism

virtual root

4
N\
N\
N\

/)

NI
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Post-order Traversal

2 log
a

AN~
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Parallel Post-order Traversa




Parallel Post-order Traversal

How many times do we need to synchronize
2 log(ly) computations in this tree?

virtual root \/
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Parallel Post-order Traversal

Overall Score
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Parallel Post-order Traversal

Overall Score Ouch —floating point additions
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Parallel Post-order Traversal

Overall
Score

> Iog(l.) Z log(l;)

- \ //\\ \\
/ A\ \
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Current MP I parallelization of

RAXML—-NG
PO P1
000000 / MPI_Allreduce () o000 /
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Why? - distinct round off error
propagation

2 cores 4 cores
000000 N = N
4 v\? ~__| \?
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MPT Allreduce ()

e MSA with 1000 sites
e Two cores calculate LnL for 500 sites each

 core O0: LnL 54

« core 1: LnLyq, 100

* After executingan MPI_Allreduce ()
both cores have the overall
LnL = LnL[l-SOO] + I—m—[501-10001

IN memory
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MPT Allreduce ()

* Reproducibility: Ideally we want to get bit-wise
identical results regardless of the number of
cores we use - not the case
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MPT Allreduce ()

Reproducibility: Ideally we want to get bit-wise identical
results regardless of the number of cores we use

For this we need a reproducible MPI_Allreduce ()

Christoph Stelz "Core-Count Independent Reproducible
Reduce", Bachelor thesis, Institute of Theoretical
Computer Science, Karlsruhe Institute of Technology,
Germany, April 2022.

Of course there is a performance trade-off a reproducible
MPI_Allreduce () has higher computational cost

- still needs to be assessed In RAxXML-NG
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Cost

ReproBLAS 4 : ] {3 o o 0 © O
gllreduced —______ —— O 0.0 (o] oo
Binary Tree . " }
! 4 I 00 L&) Qo Q
Summation ——

300 e 225)s 2504e 275us 300 s A25us 350us 375 s

Accumblation Time

Figure 4.3.: Runtime distribution for all three summation modes on the dataset rokasD7

(N =21 110970, p = 256). We removed the lowest and highest outlier for each
accumulation mode.



Outline

* The root of all evil

* Seqguential Computations
* Parallel Computations

* Software Quality
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SW Engineering

* As a student | thought that SW engineering Is a

sub-discipline of philology — anc

 Many very hard lessons learnec
world production level codes !!!!
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Project Complexity
the good old days

Sequence - Align

Tl ACGT T1 ACGT
T2 ACC T2 ACC-

T3 ACGG T3 ACGG
T4 AAGC T4 AAGC
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Project Complexity
the good old days

Sequence - Align - Infer Tree

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC
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T1 T2
T1 ACGT

T2 ACC-
T3 ACGG
T4 AAGC
T3 T4



Project Complexity
the good old days

Sequence - Align - Infer Tree - Publish

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

100
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Project Complexity Today

A cellular target for human
-J‘m Vi 3 i Does DNA act aga
5 pp. XXX & XX 3
telephone line? p mss

All aTwitter over an The extragalactic badiground's A stable pold rt giv
Internet study oo uneven glow pp ATV XX s i
g sharper resolution p w7

12 DECEMBER 2014

scincemay sy

RYAAAS

Insect

phylogeny
resolved

Molecular insights into
insect origins and evolution
pXAX

150 insect transcriptomes 50 bird genomes
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Project Complexity Today

1KITE Dataflow

e

Ll_wﬂ.l. e - . ,J\ ) _v.“ ‘-\ hl---;;_l;_-. - = =y foe : ; \ .
.—.T- o . '\P
@ = = P
1000 INSECT TRANSCRIPTOME EVOLUTION

(c) Peter Grobe + the 1KITE Team, ZFMEK, Bann, Germany

Version; 20120607
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Project Complexity Today

\

1KITE DataﬂOW What if there is just
. -. one—bug here’?

[ "~ : ' y
I | - 1K I I E
(_1 Ll KITE Team, ZFMEK, Bon

u 0 1000 INSECT TRANSCRIPTOME EVOLUTION
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Project Complexity Today

— \

1KITE DataﬂOW Probablllty of bugs

[t 1 - = ' 3 o 3
i G obe + the 1KITE Team, ZFMK, Bann, Germany

v 2012060 1000 INSECT TRANSCRIPTOME EVOLUTION

104



Project Complexity Today
i \\

1KITE DatafloyvScripts, wrappers, etc. written |
| by a plethora of researchersin | -—

a large number-of languages:

X perl_,, python, C, C++, JAVA, etc.

() Peter Grok y IK I I E
Version; 2012

1000 INSECT TRANSCRIPTOME EVOLUTION
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Bioinformatics Tools

* We knew many tools are pretty awful

* Numerous self-taught programmers from
application domains

* So we did some manual analyses and started
ranting

JOURMAL ARTICLE

The State of Software for Evolutionary Biology &

Diego Darriba, Tomas Flouri, Alexandros Stamatakis =

Molecular Biology and Evolution, Volume 35, Issue 5, May 2018, Pages 1037-1046,
https://doi.org/10.1093/molbev/msy014
Published: 29 January 2018
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The 'crappy' software project

Internal name of the project
in our lab
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The 'crappy' software project

* Analyzed 15 widely-used evolutionary biology tools =
65,000 citations

* Analyses performed

« Compiled with gcc and clang with all warnings enabled
« Memory check with valgrind

* Checked if assertions are used via assert()

* Analyzed degree of code duplication

« Caution: “bad” quality does not induce that a tool is faulty,
but the probability of it being faulty is higher!
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The birth of SoftWipe

JOURNMNAL ARTICLE

The State of Software for Evolutionary Biology &

Diego Darriba, Tomas Flouri, Alexandros Stamatakis =

Molecular Biology and Evolution, Volume 35, Issue 5, May 2018, Pages 1037-1046,
https://doi.org/10.1093/molbev/msy014
Published: 29 January 2018

* Chatting with a science journalist about the

109

above paper he asked me if this code analysis
process can be automated - the start of the
SoftWipe project



SoftWipe

* Development of SoftWipe - An automated tool
and benchmark for relative quality ranking of
scientific software

* Ranking of 53 open source tools written in C or
C++ from a wide range of research areas

e Astrophysics

° nature » scientific reports » articles » article

° Article | Open Access | Published: 11 May 2021
The SoftWipe tool and benchmark for assessing coding
standards adherence of scientific software

Adrian Zapletal, Dimitri Hohler, Carsten Sinz & Alexandros Stamatakis &=

Scientific Reports 11, Article number: 10015 (2021) | Cite this article

3414 Accesses | 1 Citations | 92 Altmetric | Metrics
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Benchmark

Available at https://github.com/adrianzap/softwipe/wiki/Code-Quality-Benchmark

Code Quality Benchmark

angtft edited this page on Apr 28, 2022 - 54 revisions

To generate a benchmark, we have executed softwipe on a collaction of programs, most of which are bioinformatics
tools from the area of evolutionary biology. Some of the below tools (genesis, raxmi-ng, repeatscounter, hyperphylo)
have been developed in our |ab. You will find a table containing the code quality scores below. Note that this Is subject
to change as we are refining our scoring criteria and including more tools.

Softwipe scores for each category are assigned such that the "best” program in each category that is not an outlier
obtains a 10 out of 10 score, and the "worst” program In each category that is not an outlier is assigned a 0 out of 10
score. An outlier Is defined to be a value that lies outside of Tukey's fences.

All code quality categories use relative scores. For instance, we calculate the number of compiler warnings per total
Lines Of Code (LOC). Hence, we can use those relative scores to compare and rank the different programs in our
benchmark. The overall score that is used for our ranking is simply the average over all score categories. You can find a
detailed description of the scoring categories and the tools included in our benchmark below.

relative

program overall score compiler_and_sanitizer assertions cppcheck clang_tidy ¢y
genesis-0.24.0 9.0 9.1 9.9 8.7 8.4 9.2 9.C
fastspar 83 8.6 9.6 2.0 9.9 9.9 8.8
axe-0.3.3 7.6 7.6 9.4 1.2 6.6 93 6.2
pstl 7.5 71 10.0 0.4 8.0 5.6 93
raxml-ng_v1.0.1 75 78 9:9 4.2 6.6 9.0 78
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https://github.com/adrianzap/softwipe/wiki/Code-Quality-Benchmark

SoftWipe Criteria |

e Per criterion, calculate & assign score 0-10 such that

e "pest" program under criterion that is not an outlier gets 10/10
e "worst" program under criterion that is not an outlier gets 0/10
* Outliers: values that are outside of Tukey's fences.

 Then just take the unweighted average over all criteria to get an
overall SoftWipe score

 We apply some corrections such that the global score does not
change when more tools are added to the benchmark (details
omitted)
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SoftWipe Criteria ll

compiler and sanitizer: use clang compiler and count the number of warnings -
we activate almost all warnings for this. Warnings are weighted - each warning has
a weight of 1, 2, or 3, where 3 is most dangerous (this is totally subjective).

We also use clang sanitizers (ASan and UBSan) - if they yield warnings, we
add them to the weighted warning sum above with weight 3. The compiler and
sanitizer score is calculated from the weighted sum of warnings per total LOC.

assertions: The count of assertions (C-Style assert (), static_assert (), or
custom assert macros, if defined) per total LOC.

cppcheck: #warnings found by the static code analyzer cppcheck per total LOC.
cppcheck also categorizes warnings — analogous weighting as for compiler
warnings.

clang-tidy: #warnings found by the static code analyzer clang-tidy per total
LOC. clang-tidy also categorizes warnings — analogous weigthing as for
compiler warnings.
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SoftWipe Criteria lll

cyclomatic complexity: software metric to quantify the complexity/modularity of a program.
We use 1izard to assess the cyclomatic complexity of a source code.

lizard warnings: Number of functions that are considered too complex, relative to the total
number of functions - 1izard considers a function as "too complex" if its cyclomatic
complexity, its length, or its parameter count exceeds a certain threshold value.

unique rate: amount of unique code; a higher amount of duplicated code yields a lower
value. Also computed with 1izard.

kwstyle: #warnings found by the static code style analyzer KiWwstyle per total LOC. We
configure KwStyle using the KwStyle.xml file that ships with SoftWipe.

infer: we weight the warnings found by the static analyzer Infer and use the weighted
warnings per LOC rate to calculate a score.

test count: We try to relate the unit test LOC in with overall LOC count by compting:
test_code_loc / overall_loc . The detection of unit test LOC should be improved — at present
we interpret source files containing the keyword "test" in their path as unit test files.
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Let’'s have a look at the benchmark
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progrim name

absolute score

relative score

BoTesls
hyperphylo
kakypar
candy-kingdom
bindash-1.0
Fastspar
repealscounter
nxe-0.33
virulign-1.001
nnf-1. 1 .Ofonnuf
nnf-1. 1 .(Fennaf
ExpunsionHunter
plucose-3-drup
raxml-ng
dawyg
ntEdit-1.2.3
defor

EWIF

lemom

reenscs
IQ-TREE-2.(rzl
BGSA_CPU-1.0
emeral [
dr_sasn n
copmem-(1.2
samilonls
seq-gen
dna-nn-l. |

=l

cryfe-18.06
ngsl.Dy
HLA-LA
igtreat 610
vsearch

prank

pregjual
minimagp
phyml

clustal

mrbayes
icofiee

gadget

cristlash
PopLDdecay
cellooal

bpp

ms

miafit

pthenn
covid-sim-0h [ 3:0
indelible

2.6
2.6
84
8.2
2.0
7.8
75
75
74
74
74
1.3
Tl

7.0
6.8
g
6.3
0.2
fr.1

fr.

fr.1

59
.1

4.4

Lid b b L
=]

N A R PRI

= b b L

B8
B.6
ES
B2
79
79
1.7
1.5
T4
1.5
T4
1.5
7.0
7.0
6.9

4.0
4.0
3.8
E¥s
E¥s
3T
3.l
28
24
1.0

SoftWipe
Benchmark



pProgrun name absolute seore | relative score

BoTesls
hyperphylo
kakypar
candy-kingdom
bindash-1.0
Fastspar
repealscounter
nxe-0.33
virulign-1.001
nnf-1. 1 .Ofonnuf
nnf- 1.1 (Mennaf
ExpunsionHunter
plucose-3-drup
raxml-ng

dawg
ntEdit-1.2.3
defor

EWIF

lemom

reenscs
IQ-TREE-2.(rzl
BGSA_CPU-1.0
emeral [
dr_sasn n
copmem-(1.2
samilonls
seq-Een
dna-nn-l. |

=l

cryfe-18.06
ngsl.Dy
HLA-LA
igtreat 610
vsearch

prunk

pregual
minimagp

phyml

clustal

mrbayes
icofiee

gadget

cristlash
PopLDdecay
cellooal

bpp

ms

miafit

pthenn
covid-sim-0h [ 3:0
indelible

2.6
84
8.2
.0
7.8
75
75
74
74
74
1.3
Tl

7.0
6.8
g
6.3
0.2
fr.1

fr.

fr.1

6.9
6.2
6.4

)

5.0
45
44
4.6
4.5
44
44
44
43
4.1

4.2
4.4
4.4
1.8
LN
A

3.l

28

24
1.0

SoftWipe
Benchmark

Does not change over time as more tools are added -
can easily be referenced



progrim name

BoTesls
hyperphylo
kakypar
candy-kingdom
bindash-1.0
Fastspar
repealscounter
nxe-0.33
virulign-1.001
nnf-1. 1 .Ofonnuf
nnf- 1.1 (Mennaf
ExpunsionHunter
plucose-3-drup
raxml-ng

dawg
ntEdit-1.2.3
defor

EWIF
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IQ-TREE-2.(rzl
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copmem-(1.2
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cryfe-18.06
ngsl.Dy
HLA-LA
igtreat 610
vsearch

prunk

pregual
minimagp

phyml

clustal

mrbayes
icofiee

gadget

cristlash
PopLDdecay
cellooal

bpp

ms

miafit

pthenn
covid-sim-0h [ 3:0
indelible

absolute Scunrl relative score |

2.6
2.6
84
8.2
.0
7.8
75
75
74
74
74
1.3
Tl

7.0
6.8
g
6.3
0.2
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fr.

fr.1

)

5.0
45
44
4.6
4.5
44
44
44
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4.1

4.2
4.4
4.4
1.8
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A

3.l

28

24
1.0

SoftWipe
Benchmark

Does change over time as more tools are added -
Difficult to be referenced
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absolute score

relative score

BoTesls

hyperphylo
kakypar

candy-kingdom

bindagh-1.0
Fastspar
repealscounter
nxe-0.33
virulign-1.001
mafe 11 (funnnf
nafs 11 . (Mennaf
ExpunsionHunter
plucose-3-drup
raxml-ng
dawyg
ntEdit-1.2.3
defor

EWOF

lemon

recnecs
IQ-TREE-2.U-rcl
BGSA_CPU-1.0
emeral [
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copmem-(1.2
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seq-gen
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sl

cryfe-18.06
ngsl.Dy
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igtreat 610
vsearch

prunk
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phyml

clustal

mrbayes
lcofiee

gadeet

cristlash
PopLDdecay
celleoal

bpp

ms

miafit

pthenn
covid-sim-(h, 1 3.0
indelible

2.6 B8
2.6 E.6
> 24 ES
g2 B2
2.0 749
7.8 749
75 1.7
75 1.5
74 T4
74 7.5
74 T4
7.3 1.5
.1 T0
7.0 T.0
6O.8 6.9
g 6.2
6.3 6.4
0.2 L Dl
fr.1 ()
fr. .1
fr.1 5.7
59 54
Bt 55
5.7 i
5.7 57
36 56
56 56
53 5.2
5.2 5.2
5.1 5.1
5.1 S50
49 4.5
49 449
4.6 4.6
4.6 4.5
4.5 44
4.5 44
4.4 44
4.2 3
4.1 4.1
4.1 4.2
4.1 4.0
4.0 4.0
38 38
X in
38 in
37 3.7
i3 3.1
29 28
25 24
14 [0

Written by computer
Scientists :-)

SoftWipe
Benchmark



program name absolute seore  relative score

BoTesls "6 B.8 ]
lLiyperplivio 8.6 B.6 S O | l ‘ ,\ ’ | e
kahypar g4 3

2 = My lab in Germany :-)
Benchmark

virulign-1.001
mnfe 1. 1. (funnmf
mnfel.1.(fennaf
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plucose-3-drup A i
raxml-ng l 7.0 7.0
dawg 6.8 6.9
ntEdit-1.2.3 g 6.2
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lemon fr.1 6.0
recnecs fr.1 .l
IQ-TREE-2.U-rcl fr.1 57
BGSA_CPU-1.0 59 54
emeral [ 58 55
dr_sasn n 5.7 .0
copmem-(1.2 3.7 5.7
samionls A6 5.6
seq-Een 6 5.6
dnz-nn-{l | 53 3.2
sl 52 3.2
cryfe-18.06 5.1 5.1
ngsl.Dy 3. 5.0
HLA-LA 49 45
igtreat 610 49 44
vsearch 4.6 46
prunk 4.6 4.5
pregul 4.5 44
LA 4.5 44
phyml 44 44
clustal 4.2 43
mrbayes 4.1 4.1
lcofiee 4.1 42
gadget 4. 40
cristlash 4.0 4.0
PopLDdecay 38 3.8
celleoal 3 in
bpp 38 EXN
ms 33 T
mafit i3 31
pthenn 29 2.8
covid-sim-(h, 1 3.0 25 24
indelible 14 [0
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pregual
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bpp Astrophysics
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pthenn

covid-sim-(h [ 300 2. g
indelible 14 1.0



progrim name

absolute score

relative score
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hyperphylo
kakypar
candy-kingdom
bindash-1.0
Fastspar
repealscounter
nxe-0.33
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7
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SoftWipe
Benchmark

Tools with highly similar functionality



pProgrun name absolute seore  relative score
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candy-kingdom g2 B2

bindash-1.0 50 19

Fastspar 1.8 19 m
repealscounter 75 7T e n C ar
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ExpunsionHunter 73 1.5

plucose-3-drup 7.1 7.0
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pProgrun name absolute seore

relative score
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Coding that led to lockdown was 'totally
unreliable' and a 'buggy mess', say experts

The code, written by Professor Neil Ferguson and his team at Imperial College London,
was impossible to read, scientists claim

Covid simulation tool




SoftWipe In Practice

Leads to healthy competition among lab members — everyone wants to write the cleanest
code

Used by researchers inside and outside of the lab during the development process

— potential bugs identified and avoided (e.g., bug that yielded plausible results and would
have gone undetected)

- Yyielded improved performance (inlining warnings fixed)
- used in Continuous Integration tool
Used as teaching tool in programming practicals

SoftWipe score already used by us and others in Bioinformatics software paper
submissions

From the Abstract: Finally, Lagrange-NG exhibits substantially higher adherence to coding
quality standards. It improves a respective software quality indicator as implemented in the
SoftWipe tool from average (5.5; Lagrange) to high (7.8; Lagrange-NG)

Vision: Establish software quality indicators as a necessary prerequisite for (Bioinformatics)
software paper submissions
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Software Quality and Maintainability

* The Next Generation (=NG) projects:

* Re-design, re-factoring, from scratch re-implementation of
flagship tools to ensure maintainability, sustainability, and
extensibility & increase scalability/performance

* ModelTest-NG — model testing of evolutionary
models for phylogenetic inference

* RAxXML-NG — phylogenetic inference

* EPA-NG — phylogenetic placement of environmental
reads

* Lagrange—NG — Biogeography tool
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A Bachelor Thesis

* One of the most fundamental unanswered questions that has been
bothering mankind during the Anthropocene is whether the use of
swearwords in open source code is positively or negatively correlated with
source code quality.
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A Bachelor Thesis

* One of the most fundamental unanswered questions that has been
bothering mankind during the Anthropocene is whether the use of
swearwords in open source code is positively or negatively correlated with
source code quality.

* To investigate this profound matter we crawled and analyzed over 3800 C
open source code containing English swearwords and over 7600 C open
source code not containing swearwords from GitHub.
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A Bachelor Thesis

* One of the most fundamental unanswered questions that has been
bothering mankind during the Anthropocene is whether the use of
swearwords in open source code is positively or negatively correlated with
source code quality.

* To investigate this profound matter we crawled and analyzed over 3800 C
open source code containing English swearwords and over 7600 C open
source code not containing swearwords from GitHub.

 We find that open source code containing swearwords exhibit significantly
better code quality than those not containing swearwords under several
statistical tests.
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A Bachelor Thesis

* One of the most fundamental unanswered gquestions that has been bothering
mankind during the Anthropocene is whether the use of swearwords in open
source code is positively or negatively correlated with source code quality.

* To investigate this profound matter we crawled and analyzed over 3800 C
open source code containing English swearwords and over 7600 C open
source code not containing swearwords from GitHub.

* We find that open source code containing swearwords exhibit significantly
better code quality than those not containing swearwords under several
statistical tests.

* We hypothesise that the use of swearwords constitutes an indicator of a
profound emotional involvement of the programmer with the code and its
Inherent complexities, thus yielding better code based on a thorough, critical,
and dialectic code analysis process.

130



131

A Bachelor Thesis

One of the most fundamental unanswered questions that has been bothering
mankind during the Anthropocene is whether the use of swearwords in open
source code is positively or negatively correlated with source code quality.

To investigate this profound matter we crawled and analyzed over 3800 C open
source code containing English swearwords and over 7600 C open source code
not containing swearwords from GitHub.

We find that open source code containing swearwords exhibit significantly better
code quality than those not containing swearwords under several statistical tests.

We hypothesise that the use of swearwords constitutes an indicator of a profound
emotional involvement of the programmer with the code and its inherent
complexities, thus yielding better code based on a thorough, critical, and dialectic
code analysis process.

Caution: if you swear in source code it doesn’t automatically get better !!!
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The Results

. "\ Alexis Stamatakis Ned
| @AlexisCompBio

A Bachelor thesis in my lab makes a seminal contribution to software
engineering - open source codes written in C on github have higher code
guality when they contain swear words.

C source code without swear words C source code with swear words

-] E ¥ 13

Code quality score

6:56 AM - Feb 10, 2023 - 947.2K Views

i1 View Tweet analytics

1,960 Retweets 291 Quote Tweets  11.2K Likes



The Word Cloud
(10% of swear repos)

. &= asses

{:;ll -g a S 'S
bullshit

clusterfuck

.. damn
133 a



Thank you for your attention
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