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Focus of This Lecture

● Computational Reproducibility 

→ If I run a program with the same parameters n times 
will I always get the same results? 

● We will not cover topics such as 
● Archiving, storing, and sharing the data 
● Providing scripts for reproducing results and figures

● I will tell you a story of all the things that have gone 
wrong over the years → Murphy’s law   

Anything that can go wrong will go wrong



  

3

Outline

● The root of all evil 
● Sequential Computations
● Parallel Computations
● Software Quality 
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Floating Point Numbers

● Machine numbers are an imperfect mapping of the infinite real 
numbers to a finite number of machine values!
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Imperfect Mapping - Examples

● Double precision numbers (64 bits) 
● Sign bit: 1 bit
● Exponent: 11 bits
● Significand precision: 53 bits (52 explicitly stored)

● 252 + 0.2 = 252 (next number after 252 is 252 + 1)
● 1 + 1 / 254 = 1 (next number after 1 + 1/252)
● Between 2n and 2n+1 there are always 252 values 

that are evenly spaced !  
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Statistics

● In most lectures of this course we deal with 
statistical computations 

→ on the computer we need to use floating 
point values to represent probabilities  
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Felsenstein pruning
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Felsenstein pruning
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Values get smaller and 
smaller to as we 
approach the virtual root
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Numerical Underflow
Conditional likelihood values become so 
small that they can not be represented on a
computer any more → underflow !!!!
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Overflow & Underflow

IEEE 754 standard for 32-bit floating point numbers
1 bit sign
8 bits exponent 
23 bits significand  
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Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and 
smaller as we move 
to the root 
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Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and 
smaller as we move 
to the root → 
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

We need to apply 
numerical scaling techniques

to avoid underflow!
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Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and 
smaller as we move 
to the root → 
this needs to be
handled!0.1
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Typical approach
1) Check if values are too small
2) If so multiply with some large number
3) Undo those scaling multiplications (somehow) in the end
4) for likelihood this undoing is easy   
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What went wrong?

● For DNA models without rate heterogeneity this scaling approach worked fine

→ check if all 4 conditional likelihoods at a given CLV and site are smaller 
than a minimum & multiply with large number 

● For DNA models with rate heterogeneity this doesn’t always work 

→ jointly checking that all 16 conditional likelihoods for the 4 typical discrete 
rates are smaller than a minimum doesn’t work 

→ the spread of the values is too large because of the distinct rate categories 

→ scale individually per rate category 

→ higher computational cost 
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What went wrong? 

● We know that likelihood claculations are compute- and 
memory-intensive 

● So why not use single-precision (32 bit) instead of 
double precision (64 bit) floating point values?

● Numerics for Maximum Likelihood break down 
● 10-fold increase in scaling multiplications when using 

single precision  
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Felsenstein pruning
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P(t) = eQt is numerically
not easy 
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Felsenstein pruning
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P(t) = eQt is numerically
not easy 
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What went wrong?

● In RAxML we used the matrix exponential function from the book - 
Numerical Recipees in C

● Uses Eigenvector/Eigenvalue decomposition 
● Especially the Intel icc compiler tended to be very aggressive when 

trying to optimize this function 

→ numerical breakdown 
● Solution

 eigen.o : eigen.c $(GLOBAL_DEPS)

         $(CC) -c -o eigen.o eigen.c

Compile eigenvector decomposition function without optimization 
flags 
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Are you occasionally using PCA? 

● Principal Component Analysis 
● Also relies on Eigenvector/Eigenvalue 

decomposition → beware !!!! 



  

20

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A  C  G  TA  C  G  T

AA
CC
GG
TT

A  C  G  TA  C  G  T

L^(k)

L^(i) L^(j)

Position c

Consider that you only want to compute this triplet of conditional 
likelihood vectors of fixed length n.
L^(i), L^(j), P(b_i), P(b_j) are given as input and you just compute 
L^(k) as output of a micro-benchmark.
What do you expect the run-times to be if you just provide 
different input vectors L^(i)’, L^(j)’ but again of length n? 
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What went wrong? 

● When developing phylogenetic placement 
methods, we observed some inexplicable run 
time deviations of about 50% for exactly this 
operation

● It didn’t make any sense since we executed n 
times the exact same arithmetic operations, just 
on different input data 

→ until we learned about de-normalized floating 
point values   



  

22

Denormalized Floating Point 
Numbers

Intended to allow for gradual underflow to zero 

When de-normalized values are encountered, the processing cost inside the CPU 
for multiplications and additions is increased.

→ the runtimes are input data dependent !
→ Problem with reproducibility of run time performance benchmarks
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Denormalized Numbers

● De-normalized floating point numbers and their impact on run-times and 
performance benchmark

● J. Björndalen, O. Anshus: “Trusting floating point benchmarks-are your 
benchmarks really data-independent?” Applied Parallel Computing. 
State of the art in Scientific Computing 2010; pp 178-188, Springer.

● Alexandre F. Tenca, Kyung-Nam Han, David Tran: “Performance 
Impact of Using Denormalized Numbers in Basic Floating-point 
Operations” IEEE, Forty-First Asilomar Conference on Signals, 
Systems and Computers, 2007.

● The concrete example with Conditional Likelihood Vector computations 
that yielded highly diverging run times due to de-normalized floating point 
numbers can be found here  
https://github.com/stamatak/denormalizedFloatingPointNumbers 

https://github.com/stamatak/denormalizedFloatingPointNumbers
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The story so far

● Flaoting point number are an imperfect mapping 
of the real numbers to machine numbers 

● All sorts of numerical instabilities can arise 
● There can be in issue when trying to reproduce 

performance results 
● → Distinct processor  types (hardware 

architectures) may be handling denormalized 
floating point numbers differently! 
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Does weird stuff only happen for 
floating point? 

● It is more likely to happen

→ with integer arithmetic there exists an exact mapping of 
integers to machine numbers

→ however overflow can still occur !!!
● But what if the same integer random number seed yields a 

different series of random numbers ???
● We need random numbers a lot in our tools 
● Specifying a random number seed should normally 

guarantee that the same sequence of random numbers is 
generated → reproducibility of results!!!
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What went wrong?

● We were not able to reproduce our own results 
on a different machine!!!

● Any ideas? 
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What went wrong?

● We were not able to reproduce our own results on a different 
machine!!!

● Any ideas?
● The constant changes in computer architectures, compilers, and 

scientific libraries further complicate the reproducibility of 
experiments. For example, in the current analysis, MaCS (v.0.4c) 
produced different results when using identical random number 
seeds but different versions of the boost library (www.boost.org, 
v1.33 and v1.40) because of code changes in the random 
number generator implementation (supplementary section X, 
Supplementary Material online). We observed this behavior by 
pure chance ...

http://www.boost.org/
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Take Home Message

● Strict version control !!!!
● Not only control the version of the code you 

used but also of the external libraries it relies 
upon 

● Ideally, don’t rely on external libraries when 
developing own code !!! 
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Compiler Optimization
What went wrong?

● We recently re-designed/re-wrote the popular Lagrange biogeography tool 
● Initially, we were very excited as we easily got 10-fold speedups 
● It turned out that: 

“we identified and corrected a configuration error in the process of building Lagrange, 
where important compiler optimization options were not properly utilized. Fixing this 
configuration error alone increased the computational efficiency of the original 
Lagrange by up to 10x. While this error is easy to overlook, yet trivial to fix, we assume 
that many past Lagrange analyses were conducted using the unoptimized code” 

● Lagrange was being distributed in unoptimized form (without the -O2 flag) for many 
years! 
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Floating Point
The Root of All Evil

● Computational science mostly relies on floating-point intensive codes

● How do we verify these codes?

● Numerical instabilities 

● Unstable run-time performance benchmarks

● Distinct round of error propagation 

● We stand on shaky grounds

● Scientists using those codes assume numerical results are exact 
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Reproducibility – no surprises
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Outline

● The root of all evil 
● “Sequential” Computations
● Parallel Computations
● Software Quality 
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Associativity
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Associativity

Floating point round-off errors 
will propagate differently
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Reproducibilty

● Under floating point 

(a + b) + c ≠ a + (b + c) 

→ Order of operations will affect the result 

→ round off errors due to imperfect representation of real numbers 

     will propagate differently 
● Manual code optimization or automatic code optimization with compilers (gcc -O2 flag, for 

instance) always assumes that 

(a + b) + c = a + (b + c)

→ Same code, same input, same options, at different optimization levels can yield different 
results 

→ Same code, same input, same options, run on a distinct CPU architecture can yield 
different result

→ on GPUs this is even more likely to happen 

→ for instance, we couldn’t get Lagrange-NG to run in a numerically stable way on a GPU
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Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A  C  G  TA  C  G  T

AA
CC
GG
TT

A  C  G  TA  C  G  T

L^(k)

L^(i) L^(j)

Position c

There are numerous ways to re-order
these associative computations!  
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An Example:
Post-order Traversal

virtual root

Different virtual root placements
also change the order of operations
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Post-order Traversal
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Post-order Traversal
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Post-order Traversal
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Post-order Traversal

In which order do we actually optimize the branch lengths by the way?
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More Re-Ordering:
Repeating Patterns

A …. A …. G …. G ….

CLV

Identical values, two times pattern AG
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Repeating Patterns

A …. A …. G …. G ….

CLV

Detect identical patterns and omit second computation
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Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required
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Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats 
Up to 10-fold run-time improvements
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Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats 
Up to 10-fold run-time improvements
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Reproducibilty

● Under floating point 

(a + b) + c ≠ a + (b + c) 

→ Order will affect the result – distinct round off error 
propagation

● Sequential execution: 
● Tree inference might yield different trees if you use different 

compiler 
● Tree inference might yield different trees if you use SSE3 (128 

bits) or AVX (256 bits) 
● We have observed this on real data !
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Vector Instructions

parallelism within a single CPU
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Vector Instructions

● Vector Architectures: SSE3, AVX, AVX-512

● Execute the same operation simultaneously on more than one 
value/datum

parallelism within a single CPU
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Vector Instructions

● Vector Architectures: SSE3, AVX, AVX-512

● Execute the same operation simultaneously on more than one 
value/datum

● GPUs are also just vector processors!

parallelism within a single CPU
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Vector Instructions

● RAxML-NG SSE3 & AVX versions

● A clock tick: execute one instruction

● 2.2 GHz: 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c
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Vector Instructions

● RAxML-NG SSE3 & AVX versions

● A clock tick: execute one instruction

● 2.2 GHz: 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

This operation will require 4 clock 
ticks. 
Now, if we have a vector unit of 
size/width two.
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Vector Instructions

● RAxML-NG SSE3 & AVX versions

● A clock tick: execute one instruction

● 2.2 GHz: 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

Do this operation simultaneously 
within one cycle
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Vector Instructions

● RAxML-NG SSE3 & AVX versions

● A clock tick: execute one instruction

● 2.2 GHz: 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

... and this operation 
simultaneously within one cycle: 
only two clock cycles (ticks) 
required



  

55

Time permitting: Live demo

● We can also use vector instructions for parsimony calculations

● Check https://github.com/stamatak/Parsimonator-1.0.2  

https://github.com/stamatak/Parsimonator-1.0.2
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Vector Instructions

● Standard architectures (x86)

● vector widths of 128 or 256 bits

● As of 2017: 512 bit instructions on Intel CPUs

● GPUs: at least one order of magnitude larger vectors

● Vector instructions are synchronized automatically by the processor 
clock → no synchronization overhead :-)

● Always use vectorized versions of programs !
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Horizontal Add

● Sometimes we need to sum over the values in 
a vector horizontally – we call this a horizontal 
add

→ different round off error propagation 
depending on vector width
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Horizontal Add

● Sometimes we need to sum over the values in 
a vector horizontally – we call this a horizontal 
add

→ different round off error propagation 
depending on vector width

0 2 4 6c Sum over this values in the vector
→ could be per-site log likelihoods
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Horizontal Add

● Sometimes we need to sum over the values in 
a vector horizontally – we call this a horizontal 
add

→ different round off error propagation 
depending on vector width

0 2 4 6c = (0 + 2) + (4 + 6)
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Horizontal Add

● Sometimes we need to sum over the values in 
a vector horizontally – we call this a horizontal 
add

→ different round off error propagation 
depending on vector width

0 2 4 6c = (0 + 4) + (2 + 6)
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Horizontal Add

● Sometimes we need to sum over the values in 
a vector horizontally – we call this a horizontal 
add

→ different round off error propagation 
depending on vector width

0 2 4 6c = 0 + (4 + (2 + 6))
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Reproducibilty

● Under floating point 

(a + b) + c ≠ a + (b + c) 

→ Order will affect the result – distinct round off error propagation
● Sequential execution: 

● Tree inference might yield different trees if you use different compiler 
● Tree inference might yield different trees if you use SSE3 (128 bits) or 
AVX (256 bits) 

● We have observed this on real data !
● If the dataset is difficult this is more likely to happen! 

→ difficulty prediction with Pythia 



  

Dataset Shapes

OrangutanOrangutan A A C G T T T T -A A C G T T T T -
Gorilla Gorilla A A G G T T T  - -A A G G T T T  - -
ChimpChimp A -  G G T T T T -A -  G G T T T T -
Homo SapiensHomo Sapiens A G G A T T T T TA G G A T T T T T

Well shaped

Badly shaped

18,000 bp
116,000 taxa

20,000,000 bp
1500 taxa



  

Easy & Difficult Likelihood 
Surfaces

Rough likelihood surface:
many taxa, few bp

Smooth likelihood surface:
Few taxa, many bp

badly
shaped

well
shaped

TreesTrees



  

Easy & Difficult Likelihood 
Surfaces

Rough likelihood surface:
many taxa, few bp

Smooth likelihood surface:
Few taxa, many bp

badly
shaped

well
shaped

TreesTrees

Hard to distinguish between peaks: statistically & numerically



  

Easy & Difficult Likelihood 
Surfaces

7764 taxa, 1 gene
Inferred 20 ML trees

125 taxa, 34 genes
Inferred 20 ML trees

badly
shaped

well
shaped

TreesTrees



  

Easy & Difficult Likelihood 
Surfaces

7764 taxa, 1 gene
Inferred 20 ML trees

125 taxa, 34 genes
Inferred 20 ML trees

badly
shaped

well
shaped

TreesTrees

Average RF: 34%
Average RF: 0.5%



  

Now we can quantify this
• In past years these slides about easy and hard datasets were 

very hand-wavy

• Since 2022 we can quantify & predict difficulty
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Predicting Dataset Difficulty

● Pythia tool to predict difficulty of phylogenetic analysis 

● Input: MSA 

● Output: a difficulty value ranging between 0.0 (easy) to 1.0 (hopeless)

● Invocations for our example datasets:

pythia --msa 125.phy --raxmlng ~/bin/raxml-ng

pythia --msa 7764.phy --raxmlng ~/bin/raxml-ng

● There seems to be a good correlation between the difficulty score and the average 
bootstrap support values 

● Also, “apparent convergence” speed of MCMC analyses can potentially be predicted

● A small SARS-CoV-2 dataset we analyzed 2 years ago has a difficulty score of 0.84 



  

Easy & Difficult Likelihood 
Surfaces

7764 taxa, 1 gene 125 taxa, 34 genes

badly
shaped

well
shaped

TreesTrees

Difficulty: 0.63
Difficulty: 0.14
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Difficulty Distributions

RAxML-Grove Database 
TreeBase Database 

#trees

Easy                                    Hopeless Easy                                    Hopeless
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Why does difficulty matter for 
reproducibility?  

? ?

-55000.0
-55000.1

-55000.1 -55000.0

SSE3 AVX

E
xecution

 
tim

e



  

73

Why does difficulty matter for 
reproducibility?  

? ?

-55000.0
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Why does difficulty matter for 
reproducibility?  

? ?

-55000.0
-55000.1

-55000.1 -55000.0

SSE3 AVX

E
xecution

 
tim

e

Tree searches diverge
from here on!
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Outline

● The root of all evil 
● Sequential Computations
● Parallel Computations
● Software Quality 
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Reproducibilty

● Under floating point 

(a + b) + c ≠ a + (b + c) 

→ Order will affect the result – distinct round off 
error propagation

● Parallel execution: tree inference might yield 
different trees if you use 2 or 4 cores for parallel 
likelihood calculations

We have observed this on real data !
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Felsenstein pruning (again)
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total 
execution time !
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total 
execution time !
 simple fine-grained parallelization
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Loop Level Parallelism

P

Q
R

virtual root
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Loop Level Parallelism

P

Q
R

virtual root
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Loop Level Parallelism

P

Q
R

virtual root
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Post-order Traversal

virtual root

:-)

:-)

:-)

Σ log(li)
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Parallel Post-order Traversal

virtual root

Σ log(li)
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Parallel Post-order Traversal

virtual root

Σ log(li)
How many times do we need to synchronize 

computations in this tree?  
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Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score
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Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score Ouch – floating point additions
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Parallel Post-order Traversal

Σ log(li) Σ log(li)
+

Overall 
Score

Σ log(li)
+

Σ log(li)
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Current MPI parallelization of 
RAxML-NG

? ?

MPI_Allreduce()

MPI_Allreduce()
-55000

-55000

-55001 -55001

P0 P1

E
xecution

 
tim

e



  

91

Why? → distinct round off error 
propagation 

? ?

-55000
-55001

-55001 -55000

2 cores 4 cores

E
xecut ion 

tim
e

tree searches diverge!
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MPI_Allreduce()

● MSA with 1000 sites 
● Two cores calculate LnL for 500 sites each

● core 0: LnL[1-500]

● core 1: LnL[501-1000]

● After executing an MPI_Allreduce()

both cores have the overall 

LnL = LnL[1-500] + LnL[501-1000]

in memory  
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MPI_Allreduce()

● Reproducibility: Ideally we want to get bit-wise 
identical results regardless of the number of 
cores we use → not the case  
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MPI_Allreduce()

● Reproducibility: Ideally we want to get bit-wise identical 
results regardless of the number of cores we use 

● For this we need a reproducible MPI_Allreduce() 
● Christoph Stelz "Core-Count Independent Reproducible 

Reduce", Bachelor thesis, Institute of Theoretical 
Computer Science, Karlsruhe Institute of Technology, 
Germany, April 2022.

● Of course there is a performance trade-off a reproducible 
MPI_Allreduce()has higher computational cost 

→ still needs to be assessed in RAxML-NG
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Cost
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Outline

● The root of all evil 
● Sequential Computations
● Parallel Computations
● Software Quality 
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SW Engineering

● As a student I thought that SW engineering is a 
sub-discipline of philology – and didn’t care

● Many very hard lessons learned with those real-
world production level codes !!!! 
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Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Sequence → Align 
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Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

T3 T4

T2T1

Sequence → Align →   Infer Tree   
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Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

T3 T4

T2T1

Sequence → Align →   Infer Tree  → Publish   
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Project Complexity Today

150 insect transcriptomes 50 bird genomes
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Project Complexity Today
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Project Complexity Today

What if there is just 
one bug here?
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Project Complexity Today

Probability of bugs 
increases!
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Project Complexity Today

Scripts, wrappers, etc. written
by a plethora of researchers in 
a large number of languages: 

perl, python, C, C++, JAVA, etc.
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Bioinformatics Tools

● We knew many tools are pretty awful 
● Numerous self-taught programmers from 

application domains
● So we did some manual analyses and started 

ranting  
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The 'crappy' software project

Internal name of the project 
in our lab
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The 'crappy' software project

● Analyzed 15 widely-used evolutionary biology tools ≈ 
65,000 citations

● Analyses performed
● Compiled with gcc and clang with all warnings enabled

● Memory check with valgrind 

● Checked if assertions are used via assert()
● Analyzed degree of code duplication

● Caution: “bad” quality does not induce that a tool is faulty, 
but the probability of it being faulty is higher!
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The birth of SoftWipe

● Chatting with a science journalist about the 
above paper he asked me if this code analysis 
process can be automated → the start of the 
SoftWipe project 
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SoftWipe

● Development of SoftWipe - An automated tool 
and benchmark for relative quality ranking of 
scientific software

● Ranking of 53 open source tools written in C or 
C++ from a wide range of research areas

● Astrophysics 

● Computer Science 

● Bioinformatics
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Benchmark

● Available at https://github.com/adrianzap/softwipe/wiki/Code-Quality-Benchmark 

https://github.com/adrianzap/softwipe/wiki/Code-Quality-Benchmark
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SoftWipe Criteria I

● Per criterion, calculate & assign score 0-10 such that 

● "best" program under criterion that is not an outlier gets 10/10 
● "worst" program under criterion that is not an outlier gets 0/10

● Outliers: values that are outside of Tukey's fences.
● Then just take the unweighted average over all criteria to get an 

overall SoftWipe score 

● We apply some corrections such that the global score does not 
change when more tools are added to the benchmark (details 
omitted)
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SoftWipe Criteria II

● compiler and sanitizer: use clang compiler and count the number of warnings - 
we activate almost all warnings for this. Warnings are weighted - each warning has 
a weight of 1, 2, or 3, where 3 is most dangerous (this is totally subjective). 

We also use clang sanitizers (ASan and UBSan) - if they yield warnings, we 
add them to the weighted warning sum above with weight 3. The compiler and 
sanitizer score is calculated from the weighted sum of warnings per total LOC.

● assertions: The count of assertions (C-Style assert(), static_assert(), or 
custom assert macros, if defined) per total LOC.

● cppcheck: #warnings found by the static code analyzer cppcheck per total LOC. 
cppcheck also categorizes warnings → analogous weighting as for compiler 
warnings.

● clang-tidy: #warnings found by the static code analyzer clang-tidy per total 
LOC. clang-tidy also categorizes warnings → analogous weigthing as for 
compiler warnings. 
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SoftWipe Criteria III

● cyclomatic complexity: software metric to quantify the complexity/modularity of a program.  

We use lizard to assess the cyclomatic complexity of a source code. 

● lizard warnings: Number of functions that are considered too complex, relative to the total 
number of functions - lizard considers a function as "too complex" if its cyclomatic 
complexity, its length, or its parameter count exceeds a certain threshold value.

● unique rate: amount of unique code; a higher amount of duplicated code yields a lower 
value. Also computed with lizard.

● kwstyle: #warnings found by the static code style analyzer KWStyle per total LOC. We 
configure KWStyle using the KWStyle.xml file that ships with SoftWipe.

● infer: we weight the warnings found by the static analyzer Infer and use the weighted 
warnings per LOC rate to calculate a score.

● test count: We try to relate the unit test LOC in with overall LOC count by compting: 
test_code_loc / overall_loc . The detection of unit test LOC should be improved – at present 
we interpret source files containing the keyword "test" in their path as unit test files.
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Let’s have a look at the benchmark
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SoftWipe 
Benchmark



  

117

SoftWipe 
Benchmark

Does not change over time as more tools are added → 
can easily be referenced
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SoftWipe 
Benchmark

Does change over time as more tools are added → 
Difficult to be referenced
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SoftWipe 
Benchmark

Written by computer
Scientists :-)
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SoftWipe 
Benchmark

My lab in Germany :-)
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SoftWipe 
Benchmark

Astrophysics
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SoftWipe 
Benchmark

Tools with highly similar functionality
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SoftWipe 
Benchmark

Tools with highly similar functionality
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SoftWipe 
Benchmark

Covid simulation tool
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SoftWipe in Practice

● Leads to healthy competition among lab members → everyone wants to write the cleanest 
code 

● Used by researchers inside and outside of the lab during the development process 

→ potential bugs identified and avoided (e.g., bug that yielded plausible results and would 
have gone undetected) 

→ yielded improved performance (inlining warnings fixed) 

→ used in Continuous Integration tool 
● Used as teaching tool in programming practicals 
● SoftWipe score already used by us and others in Bioinformatics software paper 

submissions 

From the Abstract: Finally, Lagrange-NG exhibits substantially higher adherence to coding 
quality standards. It improves a respective software quality indicator as implemented in the 
SoftWipe tool from average (5.5; Lagrange) to high (7.8; Lagrange-NG)

● Vision: Establish software quality indicators as a necessary prerequisite for (Bioinformatics) 
software paper submissions 
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Software Quality and Maintainability

● The Next Generation (-NG) projects:
● Re-design, re-factoring, from scratch re-implementation of 

flagship tools to ensure maintainability, sustainability, and 
extensibility & increase scalability/performance 

● ModelTest-NG – model testing of evolutionary 
models for phylogenetic inference 

● RAxML-NG – phylogenetic inference 
● EPA-NG – phylogenetic placement of environmental 

reads
● Lagrange-NG – Biogeography tool 
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A Bachelor Thesis

● One of the most fundamental unanswered questions that has been 
bothering mankind during the Anthropocene is whether the use of 
swearwords in open source code is positively or negatively correlated with 
source code quality.
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● One of the most fundamental unanswered questions that has been 
bothering mankind during the Anthropocene is whether the use of 
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source code quality.

● To investigate this profound matter we crawled and analyzed over 3800 C 
open source code containing English swearwords and over 7600 C open 
source code not containing swearwords from GitHub.
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source code quality.

● To investigate this profound matter we crawled and analyzed over 3800 C 
open source code containing English swearwords and over 7600 C open 
source code not containing swearwords from GitHub.

● We find that open source code containing swearwords exhibit significantly 
better code quality than those not containing swearwords under several 
statistical tests.
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A Bachelor Thesis

● One of the most fundamental unanswered questions that has been bothering 
mankind during the Anthropocene is whether the use of swearwords in open 
source code is positively or negatively correlated with source code quality.

● To investigate this profound matter we crawled and analyzed over 3800 C 
open source code containing English swearwords and over 7600 C open 
source code not containing swearwords from GitHub.

● We find that open source code containing swearwords exhibit significantly 
better code quality than those not containing swearwords under several 
statistical tests.

● We hypothesise that the use of swearwords constitutes an indicator of a 
profound emotional involvement of the programmer with the code and its 
inherent complexities, thus yielding better code based on a thorough, critical, 
and dialectic code analysis process.
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A Bachelor Thesis

● One of the most fundamental unanswered questions that has been bothering 
mankind during the Anthropocene is whether the use of swearwords in open 
source code is positively or negatively correlated with source code quality.

● To investigate this profound matter we crawled and analyzed over 3800 C open 
source code containing English swearwords and over 7600 C open source code 
not containing swearwords from GitHub.

● We find that open source code containing swearwords exhibit significantly better 
code quality than those not containing swearwords under several statistical tests.

● We hypothesise that the use of swearwords constitutes an indicator of a profound 
emotional involvement of the programmer with the code and its inherent 
complexities, thus yielding better code based on a thorough, critical, and dialectic 
code analysis process.

● Caution: if you swear in source code it doesn’t automatically get better !!! 
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The Results
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The Word Cloud 
(10% of swear repos)
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Thank you for your attention
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