

Computational Reproducibility
by example of phylogenetic inference

Alexandros Stamatakis

2

Focus of This Lecture

● Computational Reproducibility

→ If I run a program with the same parameters n times
will I always get the same results?

● We will not cover topics such as
● Archiving, storing, and sharing the data
● Providing scripts for reproducing results and figures

● I will tell you a story of all the things that have gone
wrong over the years → Murphy’s law

Anything that can go wrong will go wrong

3

Outline

● The root of all evil
● Sequential Computations
● Parallel Computations
● Software Quality

4

Floating Point Numbers

● Machine numbers are an imperfect mapping of the infinite real
numbers to a finite number of machine values!

5

Imperfect Mapping - Examples

● Double precision numbers (64 bits)
● Sign bit: 1 bit
● Exponent: 11 bits
● Significand precision: 53 bits (52 explicitly stored)

● 252 + 0.2 = 252 (next number after 252 is 252 + 1)
● 1 + 1 / 254 = 1 (next number after 1 + 1/252)
● Between 2n and 2n+1 there are always 252 values

that are evenly spaced !

6

Statistics

● In most lectures of this course we deal with
statistical computations

→ on the computer we need to use floating
point values to represent probabilities

7

Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

8

Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

Values get smaller and
smaller to as we
approach the virtual root

9

Numerical Underflow
Conditional likelihood values become so
small that they can not be represented on a
computer any more → underflow !!!!

10

Overflow & Underflow

IEEE 754 standard for 32-bit floating point numbers
1 bit sign
8 bits exponent
23 bits significand

11

Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root

0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

12

Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root →
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

We need to apply
numerical scaling techniques

to avoid underflow!

13

Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root →
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

Typical approach
1) Check if values are too small
2) If so multiply with some large number
3) Undo those scaling multiplications (somehow) in the end
4) for likelihood this undoing is easy

14

What went wrong?

● For DNA models without rate heterogeneity this scaling approach worked fine

→ check if all 4 conditional likelihoods at a given CLV and site are smaller
than a minimum & multiply with large number

● For DNA models with rate heterogeneity this doesn’t always work

→ jointly checking that all 16 conditional likelihoods for the 4 typical discrete
rates are smaller than a minimum doesn’t work

→ the spread of the values is too large because of the distinct rate categories

→ scale individually per rate category

→ higher computational cost

15

What went wrong?

● We know that likelihood claculations are compute- and
memory-intensive

● So why not use single-precision (32 bit) instead of
double precision (64 bit) floating point values?

● Numerics for Maximum Likelihood break down
● 10-fold increase in scaling multiplications when using

single precision

16

Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

P(t) = eQt is numerically
not easy

17

Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

P(t) = eQt is numerically
not easy

18

What went wrong?

● In RAxML we used the matrix exponential function from the book -
Numerical Recipees in C

● Uses Eigenvector/Eigenvalue decomposition
● Especially the Intel icc compiler tended to be very aggressive when

trying to optimize this function

→ numerical breakdown
● Solution

 eigen.o : eigen.c $(GLOBAL_DEPS)

 $(CC) -c -o eigen.o eigen.c

Compile eigenvector decomposition function without optimization
flags

19

Are you occasionally using PCA?

● Principal Component Analysis
● Also relies on Eigenvector/Eigenvalue

decomposition → beware !!!!

20

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

Consider that you only want to compute this triplet of conditional
likelihood vectors of fixed length n.
L^(i), L^(j), P(b_i), P(b_j) are given as input and you just compute
L^(k) as output of a micro-benchmark.
What do you expect the run-times to be if you just provide
different input vectors L^(i)’, L^(j)’ but again of length n?

21

What went wrong?

● When developing phylogenetic placement
methods, we observed some inexplicable run
time deviations of about 50% for exactly this
operation

● It didn’t make any sense since we executed n
times the exact same arithmetic operations, just
on different input data

→ until we learned about de-normalized floating
point values

22

Denormalized Floating Point
Numbers

Intended to allow for gradual underflow to zero

When de-normalized values are encountered, the processing cost inside the CPU
for multiplications and additions is increased.

→ the runtimes are input data dependent !
→ Problem with reproducibility of run time performance benchmarks

23

Denormalized Numbers

● De-normalized floating point numbers and their impact on run-times and
performance benchmark

● J. Björndalen, O. Anshus: “Trusting floating point benchmarks-are your
benchmarks really data-independent?” Applied Parallel Computing.
State of the art in Scientific Computing 2010; pp 178-188, Springer.

● Alexandre F. Tenca, Kyung-Nam Han, David Tran: “Performance
Impact of Using Denormalized Numbers in Basic Floating-point
Operations” IEEE, Forty-First Asilomar Conference on Signals,
Systems and Computers, 2007.

● The concrete example with Conditional Likelihood Vector computations
that yielded highly diverging run times due to de-normalized floating point
numbers can be found here
https://github.com/stamatak/denormalizedFloatingPointNumbers

https://github.com/stamatak/denormalizedFloatingPointNumbers

24

The story so far

● Flaoting point number are an imperfect mapping
of the real numbers to machine numbers

● All sorts of numerical instabilities can arise
● There can be in issue when trying to reproduce

performance results
● → Distinct processor types (hardware

architectures) may be handling denormalized
floating point numbers differently!

25

Does weird stuff only happen for
floating point?

● It is more likely to happen

→ with integer arithmetic there exists an exact mapping of
integers to machine numbers

→ however overflow can still occur !!!
● But what if the same integer random number seed yields a

different series of random numbers ???
● We need random numbers a lot in our tools
● Specifying a random number seed should normally

guarantee that the same sequence of random numbers is
generated → reproducibility of results!!!

26

What went wrong?

● We were not able to reproduce our own results
on a different machine!!!

● Any ideas?

27

What went wrong?

● We were not able to reproduce our own results on a different
machine!!!

● Any ideas?
● The constant changes in computer architectures, compilers, and

scientific libraries further complicate the reproducibility of
experiments. For example, in the current analysis, MaCS (v.0.4c)
produced different results when using identical random number
seeds but different versions of the boost library (www.boost.org,
v1.33 and v1.40) because of code changes in the random
number generator implementation (supplementary section X,
Supplementary Material online). We observed this behavior by
pure chance ...

http://www.boost.org/

28

Take Home Message

● Strict version control !!!!
● Not only control the version of the code you

used but also of the external libraries it relies
upon

● Ideally, don’t rely on external libraries when
developing own code !!!

29

Compiler Optimization
What went wrong?

● We recently re-designed/re-wrote the popular Lagrange biogeography tool
● Initially, we were very excited as we easily got 10-fold speedups
● It turned out that:

“we identified and corrected a configuration error in the process of building Lagrange,
where important compiler optimization options were not properly utilized. Fixing this
configuration error alone increased the computational efficiency of the original
Lagrange by up to 10x. While this error is easy to overlook, yet trivial to fix, we assume
that many past Lagrange analyses were conducted using the unoptimized code”

● Lagrange was being distributed in unoptimized form (without the -O2 flag) for many
years!

30

Floating Point
The Root of All Evil

● Computational science mostly relies on floating-point intensive codes

● How do we verify these codes?

● Numerical instabilities

● Unstable run-time performance benchmarks

● Distinct round of error propagation

● We stand on shaky grounds

● Scientists using those codes assume numerical results are exact

31

Reproducibility – no surprises

32

Outline

● The root of all evil
● “Sequential” Computations
● Parallel Computations
● Software Quality

33

Associativity

34

Associativity

Floating point round-off errors
will propagate differently

35

Reproducibilty

● Under floating point

(a + b) + c ≠ a + (b + c)

→ Order of operations will affect the result

→ round off errors due to imperfect representation of real numbers

 will propagate differently
● Manual code optimization or automatic code optimization with compilers (gcc -O2 flag, for

instance) always assumes that

(a + b) + c = a + (b + c)

→ Same code, same input, same options, at different optimization levels can yield different
results

→ Same code, same input, same options, run on a distinct CPU architecture can yield
different result

→ on GPUs this is even more likely to happen

→ for instance, we couldn’t get Lagrange-NG to run in a numerically stable way on a GPU

36

Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

There are numerous ways to re-order
these associative computations!

37

An Example:
Post-order Traversal

virtual root

Different virtual root placements
also change the order of operations

38

Post-order Traversal

39

Post-order Traversal

40

Post-order Traversal

41

Post-order Traversal

In which order do we actually optimize the branch lengths by the way?

42

More Re-Ordering:
Repeating Patterns

A …. A …. G …. G ….

CLV

Identical values, two times pattern AG

43

Repeating Patterns

A …. A …. G …. G ….

CLV

Detect identical patterns and omit second computation

44

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

45

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats
Up to 10-fold run-time improvements

46

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats
Up to 10-fold run-time improvements

47

Reproducibilty

● Under floating point

(a + b) + c ≠ a + (b + c)

→ Order will affect the result – distinct round off error
propagation

● Sequential execution:
● Tree inference might yield different trees if you use different

compiler
● Tree inference might yield different trees if you use SSE3 (128

bits) or AVX (256 bits)
● We have observed this on real data !

48

Vector Instructions

parallelism within a single CPU

49

Vector Instructions

● Vector Architectures: SSE3, AVX, AVX-512

● Execute the same operation simultaneously on more than one
value/datum

parallelism within a single CPU

50

Vector Instructions

● Vector Architectures: SSE3, AVX, AVX-512

● Execute the same operation simultaneously on more than one
value/datum

● GPUs are also just vector processors!

parallelism within a single CPU

51

Vector Instructions

● RAxML-NG SSE3 & AVX versions

● A clock tick: execute one instruction

● 2.2 GHz: 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

52

Vector Instructions

● RAxML-NG SSE3 & AVX versions

● A clock tick: execute one instruction

● 2.2 GHz: 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

This operation will require 4 clock
ticks.
Now, if we have a vector unit of
size/width two.

53

Vector Instructions

● RAxML-NG SSE3 & AVX versions

● A clock tick: execute one instruction

● 2.2 GHz: 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

Do this operation simultaneously
within one cycle

54

Vector Instructions

● RAxML-NG SSE3 & AVX versions

● A clock tick: execute one instruction

● 2.2 GHz: 2.2 * 10^9 instructions per second

0 1 2 3

0 1 2 3

0 2 4 6

+

=

a

b

c

... and this operation
simultaneously within one cycle:
only two clock cycles (ticks)
required

55

Time permitting: Live demo

● We can also use vector instructions for parsimony calculations

● Check https://github.com/stamatak/Parsimonator-1.0.2

https://github.com/stamatak/Parsimonator-1.0.2

56

Vector Instructions

● Standard architectures (x86)

● vector widths of 128 or 256 bits

● As of 2017: 512 bit instructions on Intel CPUs

● GPUs: at least one order of magnitude larger vectors

● Vector instructions are synchronized automatically by the processor
clock → no synchronization overhead :-)

● Always use vectorized versions of programs !

57

Horizontal Add

● Sometimes we need to sum over the values in
a vector horizontally – we call this a horizontal
add

→ different round off error propagation
depending on vector width

58

Horizontal Add

● Sometimes we need to sum over the values in
a vector horizontally – we call this a horizontal
add

→ different round off error propagation
depending on vector width

0 2 4 6c Sum over this values in the vector
→ could be per-site log likelihoods

59

Horizontal Add

● Sometimes we need to sum over the values in
a vector horizontally – we call this a horizontal
add

→ different round off error propagation
depending on vector width

0 2 4 6c = (0 + 2) + (4 + 6)

60

Horizontal Add

● Sometimes we need to sum over the values in
a vector horizontally – we call this a horizontal
add

→ different round off error propagation
depending on vector width

0 2 4 6c = (0 + 4) + (2 + 6)

61

Horizontal Add

● Sometimes we need to sum over the values in
a vector horizontally – we call this a horizontal
add

→ different round off error propagation
depending on vector width

0 2 4 6c = 0 + (4 + (2 + 6))

62

Reproducibilty

● Under floating point

(a + b) + c ≠ a + (b + c)

→ Order will affect the result – distinct round off error propagation
● Sequential execution:

● Tree inference might yield different trees if you use different compiler
● Tree inference might yield different trees if you use SSE3 (128 bits) or
AVX (256 bits)

● We have observed this on real data !
● If the dataset is difficult this is more likely to happen!

→ difficulty prediction with Pythia

Dataset Shapes

OrangutanOrangutan A A C G T T T T -A A C G T T T T -
Gorilla Gorilla A A G G T T T - -A A G G T T T - -
ChimpChimp A - G G T T T T -A - G G T T T T -
Homo SapiensHomo Sapiens A G G A T T T T TA G G A T T T T T

Well shaped

Badly shaped

18,000 bp
116,000 taxa

20,000,000 bp
1500 taxa

Easy & Difficult Likelihood
Surfaces

Rough likelihood surface:
many taxa, few bp

Smooth likelihood surface:
Few taxa, many bp

badly
shaped

well
shaped

TreesTrees

Easy & Difficult Likelihood
Surfaces

Rough likelihood surface:
many taxa, few bp

Smooth likelihood surface:
Few taxa, many bp

badly
shaped

well
shaped

TreesTrees

Hard to distinguish between peaks: statistically & numerically

Easy & Difficult Likelihood
Surfaces

7764 taxa, 1 gene
Inferred 20 ML trees

125 taxa, 34 genes
Inferred 20 ML trees

badly
shaped

well
shaped

TreesTrees

Easy & Difficult Likelihood
Surfaces

7764 taxa, 1 gene
Inferred 20 ML trees

125 taxa, 34 genes
Inferred 20 ML trees

badly
shaped

well
shaped

TreesTrees

Average RF: 34%
Average RF: 0.5%

Now we can quantify this
• In past years these slides about easy and hard datasets were

very hand-wavy

• Since 2022 we can quantify & predict difficulty

69

Predicting Dataset Difficulty

● Pythia tool to predict difficulty of phylogenetic analysis

● Input: MSA

● Output: a difficulty value ranging between 0.0 (easy) to 1.0 (hopeless)

● Invocations for our example datasets:

pythia --msa 125.phy --raxmlng ~/bin/raxml-ng

pythia --msa 7764.phy --raxmlng ~/bin/raxml-ng

● There seems to be a good correlation between the difficulty score and the average
bootstrap support values

● Also, “apparent convergence” speed of MCMC analyses can potentially be predicted

● A small SARS-CoV-2 dataset we analyzed 2 years ago has a difficulty score of 0.84

Easy & Difficult Likelihood
Surfaces

7764 taxa, 1 gene 125 taxa, 34 genes

badly
shaped

well
shaped

TreesTrees

Difficulty: 0.63
Difficulty: 0.14

71

Difficulty Distributions

RAxML-Grove Database
TreeBase Database

#trees

Easy Hopeless Easy Hopeless

72

Why does difficulty matter for
reproducibility?

? ?

-55000.0
-55000.1

-55000.1 -55000.0

SSE3 AVX

E
xecution

tim

e

73

Why does difficulty matter for
reproducibility?

? ?

-55000.0
-55000.1

-55000.1 -55000.0

SSE3 AVX

E
xecution

tim

e

74

Why does difficulty matter for
reproducibility?

? ?

-55000.0
-55000.1

-55000.1 -55000.0

SSE3 AVX

E
xecution

tim

e

Tree searches diverge
from here on!

75

Outline

● The root of all evil
● Sequential Computations
● Parallel Computations
● Software Quality

76

Reproducibilty

● Under floating point

(a + b) + c ≠ a + (b + c)

→ Order will affect the result – distinct round off
error propagation

● Parallel execution: tree inference might yield
different trees if you use 2 or 4 cores for parallel
likelihood calculations

We have observed this on real data !

77

Felsenstein pruning (again)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

78

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

79

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total
execution time !

80

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total
execution time !
 simple fine-grained parallelization

81

Loop Level Parallelism

P

Q
R

virtual root

82

Loop Level Parallelism

P

Q
R

virtual root

83

Loop Level Parallelism

P

Q
R

virtual root

84

Post-order Traversal

virtual root

:-)

:-)

:-)

Σ log(li)

85

Parallel Post-order Traversal

virtual root

Σ log(li)

86

Parallel Post-order Traversal

virtual root

Σ log(li)
How many times do we need to synchronize

computations in this tree?

87

Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score

88

Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score Ouch – floating point additions

89

Parallel Post-order Traversal

Σ log(li) Σ log(li)
+

Overall
Score

Σ log(li)
+

Σ log(li)

90

Current MPI parallelization of
RAxML-NG

? ?

MPI_Allreduce()

MPI_Allreduce()
-55000

-55000

-55001 -55001

P0 P1

E
xecution

tim

e

91

Why? → distinct round off error
propagation

? ?

-55000
-55001

-55001 -55000

2 cores 4 cores

E
xecut ion

tim
e

tree searches diverge!

92

MPI_Allreduce()

● MSA with 1000 sites
● Two cores calculate LnL for 500 sites each

● core 0: LnL[1-500]

● core 1: LnL[501-1000]

● After executing an MPI_Allreduce()

both cores have the overall

LnL = LnL[1-500] + LnL[501-1000]

in memory

93

MPI_Allreduce()

● Reproducibility: Ideally we want to get bit-wise
identical results regardless of the number of
cores we use → not the case

94

MPI_Allreduce()

● Reproducibility: Ideally we want to get bit-wise identical
results regardless of the number of cores we use

● For this we need a reproducible MPI_Allreduce()
● Christoph Stelz "Core-Count Independent Reproducible

Reduce", Bachelor thesis, Institute of Theoretical
Computer Science, Karlsruhe Institute of Technology,
Germany, April 2022.

● Of course there is a performance trade-off a reproducible
MPI_Allreduce()has higher computational cost

→ still needs to be assessed in RAxML-NG

95

Cost

96

Outline

● The root of all evil
● Sequential Computations
● Parallel Computations
● Software Quality

97

SW Engineering

● As a student I thought that SW engineering is a
sub-discipline of philology – and didn’t care

● Many very hard lessons learned with those real-
world production level codes !!!!

98

Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Sequence → Align

99

Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

T3 T4

T2T1

Sequence → Align → Infer Tree

100

Project Complexity
the good old days

T1 ACGT
T2 ACC
T3 ACGG
T4 AAGC

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

T3 T4

T2T1

Sequence → Align → Infer Tree → Publish

101

Project Complexity Today

150 insect transcriptomes 50 bird genomes

102

Project Complexity Today

103

Project Complexity Today

What if there is just
one bug here?

104

Project Complexity Today

Probability of bugs
increases!

105

Project Complexity Today

Scripts, wrappers, etc. written
by a plethora of researchers in
a large number of languages:

perl, python, C, C++, JAVA, etc.

106

Bioinformatics Tools

● We knew many tools are pretty awful
● Numerous self-taught programmers from

application domains
● So we did some manual analyses and started

ranting

107

The 'crappy' software project

Internal name of the project
in our lab

108

The 'crappy' software project

● Analyzed 15 widely-used evolutionary biology tools ≈
65,000 citations

● Analyses performed
● Compiled with gcc and clang with all warnings enabled

● Memory check with valgrind

● Checked if assertions are used via assert()
● Analyzed degree of code duplication

● Caution: “bad” quality does not induce that a tool is faulty,
but the probability of it being faulty is higher!

109

The birth of SoftWipe

● Chatting with a science journalist about the
above paper he asked me if this code analysis
process can be automated → the start of the
SoftWipe project

110

SoftWipe

● Development of SoftWipe - An automated tool
and benchmark for relative quality ranking of
scientific software

● Ranking of 53 open source tools written in C or
C++ from a wide range of research areas

● Astrophysics

● Computer Science

● Bioinformatics

111

Benchmark

● Available at https://github.com/adrianzap/softwipe/wiki/Code-Quality-Benchmark

https://github.com/adrianzap/softwipe/wiki/Code-Quality-Benchmark

112

SoftWipe Criteria I

● Per criterion, calculate & assign score 0-10 such that

● "best" program under criterion that is not an outlier gets 10/10
● "worst" program under criterion that is not an outlier gets 0/10

● Outliers: values that are outside of Tukey's fences.
● Then just take the unweighted average over all criteria to get an

overall SoftWipe score

● We apply some corrections such that the global score does not
change when more tools are added to the benchmark (details
omitted)

113

SoftWipe Criteria II

● compiler and sanitizer: use clang compiler and count the number of warnings -
we activate almost all warnings for this. Warnings are weighted - each warning has
a weight of 1, 2, or 3, where 3 is most dangerous (this is totally subjective).

We also use clang sanitizers (ASan and UBSan) - if they yield warnings, we
add them to the weighted warning sum above with weight 3. The compiler and
sanitizer score is calculated from the weighted sum of warnings per total LOC.

● assertions: The count of assertions (C-Style assert(), static_assert(), or
custom assert macros, if defined) per total LOC.

● cppcheck: #warnings found by the static code analyzer cppcheck per total LOC.
cppcheck also categorizes warnings → analogous weighting as for compiler
warnings.

● clang-tidy: #warnings found by the static code analyzer clang-tidy per total
LOC. clang-tidy also categorizes warnings → analogous weigthing as for
compiler warnings.

114

SoftWipe Criteria III

● cyclomatic complexity: software metric to quantify the complexity/modularity of a program.

We use lizard to assess the cyclomatic complexity of a source code.

● lizard warnings: Number of functions that are considered too complex, relative to the total
number of functions - lizard considers a function as "too complex" if its cyclomatic
complexity, its length, or its parameter count exceeds a certain threshold value.

● unique rate: amount of unique code; a higher amount of duplicated code yields a lower
value. Also computed with lizard.

● kwstyle: #warnings found by the static code style analyzer KWStyle per total LOC. We
configure KWStyle using the KWStyle.xml file that ships with SoftWipe.

● infer: we weight the warnings found by the static analyzer Infer and use the weighted
warnings per LOC rate to calculate a score.

● test count: We try to relate the unit test LOC in with overall LOC count by compting:
test_code_loc / overall_loc . The detection of unit test LOC should be improved – at present
we interpret source files containing the keyword "test" in their path as unit test files.

115

Let’s have a look at the benchmark

116

SoftWipe
Benchmark

117

SoftWipe
Benchmark

Does not change over time as more tools are added →
can easily be referenced

118

SoftWipe
Benchmark

Does change over time as more tools are added →
Difficult to be referenced

119

SoftWipe
Benchmark

Written by computer
Scientists :-)

120

SoftWipe
Benchmark

My lab in Germany :-)

121

SoftWipe
Benchmark

Astrophysics

122

SoftWipe
Benchmark

Tools with highly similar functionality

123

SoftWipe
Benchmark

Tools with highly similar functionality

124

SoftWipe
Benchmark

Covid simulation tool

125

SoftWipe in Practice

● Leads to healthy competition among lab members → everyone wants to write the cleanest
code

● Used by researchers inside and outside of the lab during the development process

→ potential bugs identified and avoided (e.g., bug that yielded plausible results and would
have gone undetected)

→ yielded improved performance (inlining warnings fixed)

→ used in Continuous Integration tool
● Used as teaching tool in programming practicals
● SoftWipe score already used by us and others in Bioinformatics software paper

submissions

From the Abstract: Finally, Lagrange-NG exhibits substantially higher adherence to coding
quality standards. It improves a respective software quality indicator as implemented in the
SoftWipe tool from average (5.5; Lagrange) to high (7.8; Lagrange-NG)

● Vision: Establish software quality indicators as a necessary prerequisite for (Bioinformatics)
software paper submissions

126

Software Quality and Maintainability

● The Next Generation (-NG) projects:
● Re-design, re-factoring, from scratch re-implementation of

flagship tools to ensure maintainability, sustainability, and
extensibility & increase scalability/performance

● ModelTest-NG – model testing of evolutionary
models for phylogenetic inference

● RAxML-NG – phylogenetic inference
● EPA-NG – phylogenetic placement of environmental

reads
● Lagrange-NG – Biogeography tool

127

A Bachelor Thesis

● One of the most fundamental unanswered questions that has been
bothering mankind during the Anthropocene is whether the use of
swearwords in open source code is positively or negatively correlated with
source code quality.

128

A Bachelor Thesis

● One of the most fundamental unanswered questions that has been
bothering mankind during the Anthropocene is whether the use of
swearwords in open source code is positively or negatively correlated with
source code quality.

● To investigate this profound matter we crawled and analyzed over 3800 C
open source code containing English swearwords and over 7600 C open
source code not containing swearwords from GitHub.

129

A Bachelor Thesis

● One of the most fundamental unanswered questions that has been
bothering mankind during the Anthropocene is whether the use of
swearwords in open source code is positively or negatively correlated with
source code quality.

● To investigate this profound matter we crawled and analyzed over 3800 C
open source code containing English swearwords and over 7600 C open
source code not containing swearwords from GitHub.

● We find that open source code containing swearwords exhibit significantly
better code quality than those not containing swearwords under several
statistical tests.

130

A Bachelor Thesis

● One of the most fundamental unanswered questions that has been bothering
mankind during the Anthropocene is whether the use of swearwords in open
source code is positively or negatively correlated with source code quality.

● To investigate this profound matter we crawled and analyzed over 3800 C
open source code containing English swearwords and over 7600 C open
source code not containing swearwords from GitHub.

● We find that open source code containing swearwords exhibit significantly
better code quality than those not containing swearwords under several
statistical tests.

● We hypothesise that the use of swearwords constitutes an indicator of a
profound emotional involvement of the programmer with the code and its
inherent complexities, thus yielding better code based on a thorough, critical,
and dialectic code analysis process.

131

A Bachelor Thesis

● One of the most fundamental unanswered questions that has been bothering
mankind during the Anthropocene is whether the use of swearwords in open
source code is positively or negatively correlated with source code quality.

● To investigate this profound matter we crawled and analyzed over 3800 C open
source code containing English swearwords and over 7600 C open source code
not containing swearwords from GitHub.

● We find that open source code containing swearwords exhibit significantly better
code quality than those not containing swearwords under several statistical tests.

● We hypothesise that the use of swearwords constitutes an indicator of a profound
emotional involvement of the programmer with the code and its inherent
complexities, thus yielding better code based on a thorough, critical, and dialectic
code analysis process.

● Caution: if you swear in source code it doesn’t automatically get better !!!

132

The Results

133

The Word Cloud
(10% of swear repos)

134

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	DNA Alignment
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Loop Level Parallelism
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

