General and Language-specific Aspects of Phylogenetic Inference

Luise Häuser^{2,3} & Alexandros Stamatakis^{1,2,3}

- 1. Institute of Computer Science, Foundation for Research and Technology Hellas
 - 2. Heidelberg Institute for Theoretical Studies
 - 3. Dept. of Informatics, Karlsruhe Institute of Technology

www.biocomp.gr (Crete lab)

www.exelixis-lab.org (Heidelberg lab)

Bioinformatics

Bioinformatics

Data-centric: pipeline building

Bioinformatics

Data-centric: pipeline building

Method-centric: tool building

Outline

- Part I (Alexis)
 - Introduction to Phylogenetic Inference
 - Sources of Uncertainty
 - Phylogenetic Difficulty
 - Using Phylogenetic Difficulty
- Part II (Luise)
 - Quantitave analysis of language datasets
 - Modeling subjectivity

The number of trees

 $3 \text{ taxa} \rightarrow 1$ tree

 \prec

The number of trees

4 taxa \rightarrow 3 trees

The number of trees

5 taxa \rightarrow 15 trees

The number of trees explodes!

possible trees with 2000 taxa

stamatak@exelixis:~/Desktop/GIT/TreeCounter\$./treeCounter -n 2000

GNU GPL tree number calculator released June 2011 by Alexandros Stamatakis

Number of unrooted binary trees for 2000 taxa: 30049638174211656151632910065681814981377232074237013089504954043012636525258308210827685996688247000464352

Problem Complexity

Problem Complexity

Finding the best tree under Maximum Likelihood is NP-hard!

Problem Complexity

Starting Trees

Starting Trees

Outline

- Part I (Alexis)
 - Introduction to Phylogenetic Inference
 - Sources of Uncertainty
 - Phylogenetic Difficulty
 - Using Phylogenetic Difficulty
- Part II (Luise)
 - Quantitave analysis of language datasets
 - Modeling subjectivity

Tree Inference Pipeline

quantification approach

Taxon 2 Taxon 4

Tree Inference Pipeline

Muscle5

Article Open Access Published: 15 November 2022

Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny

Robert C. Edgar

Nature Communications 13, Article number: 6968 (2022) Cite this article

Muscle5

Muscle5

Temperature Ensemble Forecast

Tree Inference Pipeline

A Tree with Support Values

Sources of Uncertainty

- 1 Orthology Assignment
- 2 Multiple Sequence Alignment
- 3 Tree Inference
- 4 BUT

Software Issues

- Bugs & Software Quality
- Numerical Instability
- Reproducibility
- We re-designed & optimized numerous tools the Next Generation (NG) tools series
 - RAxML-NG
 - ModelTest-NG
 - EPA-NG
 - Lagrange-NG

Sources of Uncertainty

- 1 Orthology Assignment
- 2 Multiple Sequence Alignment
- 3 Tree Inference
- 4 Software issues
- 5 BUT

Propagating Uncertainty

- Assume
 - 10 alternative orthology assignments
 - 10 x 10 alternative MSAs
 - 10 x 10 x 10 alternative trees

 \rightarrow exponential explosion with increasing pipeline length

 \rightarrow intelligent ways to explore parameter space in pipelines needed

Outline

- Part I (Alexis)
 - Introduction to Phylogenetic Inference
 - Sources of Uncertainty
 - Phylogenetic Difficulty
 - Using Phylogenetic Difficulty
- Part II (Luise)
 - Quantitave analysis of language datasets
 - Modeling subjectivity

Can we predict how difficult a phylogenetic analysis will be?

Phylogenetic Inference

Which data is more difficult to analyze?

Thousands of sequences, short sequence length

Which data is more difficult to analyze?

35

SARS-CoV-2

- Assembled 4 distinct input datasets
- Per input dataset
 - \rightarrow executed 100 independent tree searches
- As we use likelihood models, we determined the trees that are not statistically significantly different from each other per set of 100 trees
Results SARS-CoV-2

• For all input datasets about 70 out of 100 trees are not significantly different from each other with respect to their likelihood scores

Results SARS-CoV-2

- For all input datasets about 70 out of 100 trees are not significantly different from each other with respect to their likelihood scores
- But, their pair-wise topological differences (difference in tree shapes) amount on average to 70% !

Results SARS-CoV-2

- For all input datasets about 70 out of 100 trees are not significantly different from each other with respect to their likelihood scores
- But, their pair-wise topological differences (difference in tree shapes) amount on average to 70% !
 - \rightarrow extremely weak signal
 - \rightarrow don't draw conclusions from a single tree!
 - \rightarrow summarize the trees via summary statistics!

SARS-CoV-2 consensus tree colored by country

Difficulty of an MSA

This is all very hand-wavy \rightarrow can we quantify & predict this?

difficult

Difficulty Prediction

JOURNAL ARTICLE

From Easy to Hopeless — Predicting the Difficulty of Phylogenetic Analyses 3

Julia Haag 🕿, Dimitri Höhler, Ben Bettisworth, Alexandros Stamatakis

Molecular Biology and Evolution, Volume 39, Issue 12, December 2022, msac254, https://doi.org/10.1093/molbev/msac254 Published: 17 November 2022

Difficult

What does Difficulty mean?

Difficulty = ruggedness of the tree space

- Few highly similar tree topologies
- Single likelihood peak

 Highly distinct topologies, statistically indistinguishable

Difficult

Multiple likelihood peaks

Predicting Difficulty with Pythia

- Pythia = Boosted Tree Regressor
- Supervised Regression Task
 - Predict difficulty between **0** (easy) and **1** (difficult)
 - Ground truth difficulty as training target based on 100 distinct Maximum Likelihood tree inferences
- Initially trained on 4K empirical MSAs
 - Mean absolute error: 2.5%

Definition of Difficulty

Prediction Features

• Eight Features

- 4 MSA attributes
 - Sites-over-taxa
 - patterns-over-taxa
 - % gaps
 - % invariant sites
- 2 MSA information metrics
 - Shannon entropy
 - Bollback multinomial test statistic
- 2 Parsimony-tree-based features
 - Infer 100 parsimony trees
 - \rightarrow average RF-Distance
 - \rightarrow % unique topologies

SARS-CoV-2 Example

"Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult" (https://doi.org/10.1093/molbev/msaa314)

The predicted difficulty for MSA examples/covid.fasta is: 0.84.
FEATURES:
num_taxa: 4869
num_sites: 28361
Ε]
num_sites/num_taxa: 5.82
[]
avg_rfdist_parsimony: 0.79
proportion_unique_topos_parsimony: 1.0
Feature computation runtime: 1830.182 seconds
Ε]

Using Pythia

- **Prior** to tree inference
 - \rightarrow determine analysis & post-analysis setup
 - → adjust/modify MSA
 - \rightarrow explore data filtering & assembly strategies
 - \rightarrow adjust user expectations about data

Pythia developments

- New release (May 19, 2023)
 - Trained on 12K datasets
 - 11,108 DNA MSAs
 - 979 Protein MSAs
 - 460 Morphological MSAs
 - Two new features
 - Improved accuracy
 - Mean absolute error: 0.07 (previously 0.09)
 - Mean absolute percentage error: 1.7% (previously 2.5%)
- Using Pyhtia
 - See next slides

Outline

- Part I (Alexis)
 - Introduction to Phylogenetic Inference
 - Sources of Uncertainty
 - Phylogenetic Difficulty
 - Using Phylogenetic Difficulty
- Part II (Luise)
 - Quantitave analysis of language datasets
 - Modeling subjectivity

Simulation Study

THE PREPRINT SERVER FOR BIOLOGY

New Results

A Follow this preprint

A representative Performance Assessment of Maximum Likelihood based Phylogenetic Inference Tools

Dimitri Höhler, Julia Haag, 😳 Alexey M. Kozlov, Alexandros Stamatakis doi: https://doi.org/10.1101/2022.10.31.514545

This article is a preprint and has not been certified by peer review [what does this mean?].

Accuracy as Function of Difficulty

LnL difference

Adaptive RAxML-NG

New Results

Follow this preprint

Adaptive RAxML-NG: Accelerating Phylogenetic inference under Maximum Likelihood using dataset difficulty

Anastasis Togkousidis, O Alexey M Kozlov, O Julia Haag, O Dimitri Höhler, Alexandros Stamatakis doi: https://doi.org/10.1101/2023.05.15.540873

This article is a preprint and has not been certified by peer review [what does this mean?].

Preprint published May 18, 2023

Adaptive RAxML-NG

Pythia Difficult 1.0 9. (9. (0.7 a . Input Pythia Intermediate 0.5 -MSA 9 9 0.3 -• • • • - 0.0 Easy

Adaptive RAxML-NG Heuristics

- As a function of difficulty modify
 - number of independent ML tree searches
 thoroughness of the searches
 - \rightarrow use an additional tree search mechanism

Test Data & Setup

- 10K empirical MSAs from TreeBase
 - \rightarrow 9192 MSAs after filtering
- 5K simulated MSAs

Test Data & Setup

- 10K empirical MSAs from TreeBase
 - \rightarrow 9192 MSAs after filtering
- 5K simulated MSAs

Difficulty Score Distribution

Significance Tests

Distances between trees

Overall accumulated speedup: approx. 3 on empirical data

Advertisement Section

• New RAXML-NG release 10 days ago

- This is not adaptive RAxML-NG

RAxML-NG v1.2.0

Repository: amkozlov/raxml-ng · Tag: 1.2.0 · Commit: fd32e7f · Released by: amkozlov

This release introduces multiple performance optimizations which yiel 2x to 5x speedup or most typical analyses and datasets.

IMPORTANT: Due to change in defaults, the results are not compatible with previous raxml-ng versions. If you need to reproduce disabled one-by-one, please see instructions below:

New defaults & optimizations

- --search1: use parsimony starting tree by default
- · bootstrap: use parsimony starting trees by default (add --extra bs-start-rand to use random starting trees as before)
- faster CLV updates in SPR rounds by <u>@togkousa</u> (#157), add --extra fastclv-off to disable
- new logLH epsilon defaults by www.eps=1000 for brien triplet optimization, eps=0.1 for final model optimization, eps=10 ev (2022.07.13.499893v1.full.pdf)
- parallelize parsimony starting tree computation (#151)

New features

- new amino-acid replacement matrices: Q.pfam, Q.bird, Q.insect, Q.mammal, Q.plant, Q.yeast (details: <u>https://doi.org/10.109</u>
- arm64 support incl. vectorization via sse2neon library (#142)

Outline

- Part I (Alexis)
 - Introduction to Phylogenetic Inference
 - Sources of Uncertainty
 - Phylogenetic Difficulty
 - Using Phylogenetic Difficulty
- Part II (Luise)
 - Quantitave analysis of language datasets
 - Modeling subjectivity
Examined Data

- 257 linguistic data sets
 - Cognate data: 179
 - Sound-class data: 65
 - Morphological data: 13
- 379 biological data sets with morphological data
- All data sets are represented as a binary MSAs
- Comparable numbers of taxa
- Linguistic MSAs tend to comprise more sites

Entropy

Difficulty

Difficulty score

Median of external branch lengths

Median of external branch lengths

Outline

- Part I (Alexis)
 - Introduction to Phylogenetic Inference
 - Sources of Uncertainty
 - Phylogenetic Difficulty
 - Using Phylogenetic Difficulty
- Part II (Luise)
 - Quantitave analysis of language datasets
 - Modeling subjectivity

Synonyms

- Synonyms occur when collecting cognate data
- Selection is often a subjective decision
 - \rightarrow computer scientist's don't like this
- For an exemplary dataset, we assessed 1000 different possibilities of selecting synonyms with *Gerhard Jäger*
- We construct the corresponding MSAs and infer trees with ${\tt RAxML-NG}$

Synonyms – Impact of Selection

A Better Approach: Probabilistic MSAs

A Better Approach: Probabilistic MSAs

Thus far: Discrete states at each site/column

Dut Blg Mac	100000001 000001001 100000001 001000001 100000001 001000001		0 0 0	100100 0000010100 0010001000 100100 0000010100 00100010
SC	100000010 000100001	0 0	1	000100 0000010100 0010001000
Slo	100000010 000100001	0 0	1	000100 0000010100 0010001000
OCS	100000010 000100001	0 0	1	000100 0000010100 0010001000
Cze	100000010 000100001	0 0	1	000010 0000010100 0010001000

A Better Approach: Probabilistic MSAs

Idea: Use probabilistic states \rightarrow the likelihood model can seamlessly handle this!

Dut	100000001 0000010010 00	0: 1.0, 1: 0.0	0010100 0010001000
Blg	100000001 0010000010 00	0: 0.7, 1: 0.3	0010100 0010001000
Mac	100000001 0010000010 00	0: 0.9, 1: 0.1	0010100 0010001000
SC	100000010 0001000010 00	0: 0.4, 1: 0.6	0010100 0010001000
Slo	100000010 0001000010 00	0: 0.2, 1: 0.8	0010100 0010001000
OCS	100000010 0001000010 00	0: 0.1, 1: 0.9	0010100 0010001000
Cze	100000010 0001000010 00	0: 0.0, 1: 1.0	0010100 0010001000

Probabilistic MSAs

- Probabilistic MSAs allow to model uncertainties
- At each site, different symbols are observed with certain probabilities at the tips
- We assume that all synonyms for a concept occur with equal probabilities
- Based on that, we construct a probabilistic MSA
 - \rightarrow we read in probability vectors instead of discrete sequences
- The approach avoids explicit selection of synonyms
- RAXML-NG allows inference on probabilistic MSAs

Synonyms – Analysis

- We compare inferred trees to a reference tree extracted from glottolog
- We use the Generalized Quartet (GQ) distance, because the reference tree is multifurcating
- For trees based on selection of synonyms, the average GQ distance to the reference tree is *0.032*
- For the tree inferred on the probabilistic MSA, the GQ distance to the reference tree is 0.019

Thank you for your attention

Listaros village, Crete

Felsenstein Pruning Algorithm

Felsenstein Pruning Algorithm

Felsenstein Pruning Algorithm

Other stuff we are working on

Scalability

Cost per Human Genome

Single Cell Evolution

- Reconstructing the evolution, e.g., of cancer cells in a single patient is challenging
 - Noisy data
 - Erroneous data
 - Little signal
 - Few & simplistic models

Eleven grand challenges in single-cell data science

Alexey Kozlov,
Joao Alves,
Alexandros Stamatakis,
David Posada
https://doi.org/10.1101/2020.07.31.230292
This article is a preprint and has not been certified by peer review [what does this mean?]

Phylogenetic Networks

- Evolution does not need to occur in a tree-like manner due to recombination events
- We can model this via so-called phylogenetic networks

Phylogenetic Networks

- Evolution does not need to occur in a tree-like manner due to recombination events
- We can model this via so-called phylogenetic networks
- The likelihood of such a network is substantially more difficult to compute than on a tree
 - \rightarrow computational challenges

JOURNAL ARTICLE

NetRAX: accurate and fast maximum likelihood phylogenetic network inference 👌

Sarah Lutteropp ☎, Céline Scornavacca, Alexey M Kozlov, Benoit Morel, Alexandros Stamatakis

Bioinformatics, Volume 38, Issue 15, August 2022, Pages 3725–3733, https://doi.org/10.1093/bioinformatics/btac396 Published: 17 June 2022 Article history ▼

Gene Tree Species Tree Reconciliation

- There are other phenomena that complicate evolution
 - Gene loss
 - Gene transfer
 - Gene duplication
 - \rightarrow gene tree \neq species tree
- Infer & correct trees under a joint likelihood model comprising the phylogenetic likelihood and a reconciliation likelihood model

GeneRax

 First full and efficient Maximum Likelihood implementation to infer gene family trees using a given rooted species tree under a joint phylogenetic & reconciliation likelihood model

GeneRax: A Tool for Species-Tree-Aware Maximum Likelihood-Based Gene Family Tree Inference under Gene Duplication, Transfer, and Loss 👌

Benoit Morel ➡, Alexey M Kozlov, Alexandros Stamatakis, Gergely J Szöllősi

Molecular Biology and Evolution, Volume 37, Issue 9, September 2020, Pages 2763–2774, https://doi.org/10.1093/molbev/msaa141 **Published:** 05 June 2020

• **Goal:** Simultaneously infer the gene family trees **and** the species tree under a joint phylogenetic/reconciliation likelihood model

JOURNAL ARTICLE

SpeciesRax: A Tool for Maximum Likelihood Species Tree Inference from Gene Family Trees under Duplication, Transfer, and Loss d

Benoit Morel 🕿, Paul Schade, Sarah Lutteropp, Tom A Williams, Gergely J Szöllősi, Alexandros Stamatakis

Molecular Biology and Evolution, Volume 39, Issue 2, February 2022, msab365, https://doi.org/10.1093/molbev/msab365 Published: 11 January 2022

Tournament Prediction

Winning Team Prediction for the NBA 2023 Playoff

Tournament Prediction

Software Quality Assessment

 SoftWipe tool for automatic scientific software quality assessment (C and C++)

Article Open Access Published: 11 May 2021

The SoftWipe tool and benchmark for assessing coding standards adherence of scientific software

Adrian Zapletal, Dimitri Höhler, Carsten Sinz & Alexandros Stamatakis 🖂

Scientific Reports 11, Article number: 10015 (2021) Cite this article

4270 Accesses | 1 Citations | 115 Altmetric | Metrics

Empirical Software Engineering with SoftWipe

Alexis Stamatakis @AlexisCompBio · Feb 10 ···· A Bachelor thesis in my lab makes a seminal contribution to software engineering - open source codes written in C on github have higher code quality when they contain swear words.

Biological Field Work

Energy Efficiency

Ancient DNA

- Better tools for ancient DNA analyses
- Classic aDNA data analyses

