
General and Language-specific 
Aspects of Phylogenetic Inference 

Luise Häuser2,3 & Alexandros Stamatakis1,2,3

1. Institute of Computer Science, Foundation for Research and Technology - Hellas

2. Heidelberg Institute for Theoretical Studies

3. Dept. of Informatics, Karlsruhe Institute of Technology

www.biocomp.gr (Crete lab)

www.exelixis-lab.org (Heidelberg lab) 

http://www.biocomp.gr/
http://www.exelixis-lab.org/


Bioinformatics

tool1 tool2 tool3



Bioinformatics

tool2 tool3

Data-centric: pipeline building

tool1



Bioinformatics

tool2 tool3

Data-centric: pipeline building

tool1

tool2 tool3

Method-centric: tool building

tool1



Outline

● Part I (Alexis) 
● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Using Phylogenetic Difficulty

● Part II (Luise)
● Quantitave analysis of language datasets 
● Modeling subjectivity



The number of trees

3 taxa → 1 
tree



The number of trees

4 taxa → 3 trees



The number of trees

5 taxa → 15 trees



The number of trees

6 taxa → 105 trees



The number of trees explodes!

BANG !



# possible trees with 2000 taxa
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Problem Complexity

good scores

bad scores

search space
heuristic tree 
search strategy

Finding the best tree under Maximum Likelihood is NP-hard!

Global maximum
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Problem Complexity

search space
heuristic tree 
search strategy

Maximum Likelihood tree searches
 typically end up in local optima

Global maximum



Starting Trees

good scores

bad scores

search space

Global maximum

starting tree 0



Starting Trees

good scores

bad scores

search space

Global maximum

 starting tree 1



Outline

● Part I (Alexis) 
● Introduction to Phylogenetic Inference
● Sources of Uncertainty
● Phylogenetic Difficulty
● Using Phylogenetic Difficulty

● Part II (Luise)
● Quantitave analysis of language datasets 
● Modeling subjectivity



Tree Inference Pipeline
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→ no widely used uncertainty 
quantification approach
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Multiple Sequence Alignment: 
Mostly ad hoc methods → 
no widely used uncertainty 
quantification approach, but ...
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Temperature Ensemble Forecast



Tree Inference Pipeline

Taxon 1:ACGTTT
Taxon 2:ACGTT
Taxon 3:ACCCT
Taxon 4:AGGGTTT

MSA
Program

Tree 
inference
program

Taxon 1:ACGTTT-
Taxon 2:ACGTT--
Taxon 3:ACCCT--
Taxon 4:AGGGTTT

Taxon 1

Taxon 2

Taxon 3

Taxon 4

Phylogenetic Inference: 
A long history of explicit uncertainty models
Bootstrap Methods for Maximum Likelihood
Posterior Probabilities for Bayesian Inference using MCMC
 



A Tree with Support Values
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Sources of Uncertainty

1 Orthology Assignment 

2 Multiple Sequence Alignment 

3 Tree Inference 

4 BUT 



Software Issues

● Bugs & Software Quality 
● Numerical Instability 
● Reproducibility
● We re-designed & optimized numerous tools – the 

Next Generation (NG) tools series 
– RAxML-NG

– ModelTest-NG

– EPA-NG

– Lagrange-NG 



Sources of Uncertainty

1 Orthology Assignment 

2 Multiple Sequence Alignment 

3 Tree Inference 

4 Software issues

5 BUT 



Propagating Uncertainty

● Assume 
– 10 alternative orthology assignments 
– 10 x 10 alternative MSAs
– 10 x 10 x 10 alternative trees 

→ exponential explosion with increasing pipeline 
length

→ intelligent ways to explore parameter space in 
pipelines needed
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Can we predict how difficult a 
phylogenetic analysis will be? 

good scores

bad scores

search space

Global maximum
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Phylogenetic Inference

S1 ACGTT
S2 ACCGG
S3 TGGAG
S4 GGCTT

S1

S2

S3

S4

The difficulty of inferring a tree
depends on the shape of the 
multiple sequence alignment

MSA
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Dataset Shapes

Which data is more difficult to analyze? 
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Thousands of sequences, short sequence length

This?
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Dataset Shapes

Which data is more difficult to analyze? 
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Few sequences, long sequence length

Or this? 
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Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences
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Dataset Shapes

Intuitively it is this dataset here, as it contains much less 
information for telling apart more sequences

SARS-CoV-2 datasets are difficult !  
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SARS-CoV-2

● Assembled 4 distinct input datasets 
● Per input dataset 

→ executed 100 independent tree searches
● As we use likelihood models, we determined 

the trees that are not statistically significantly 
different from each other per set of 100 trees
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Results SARS-CoV-2

● For all input datasets about 70 out of 100 trees 
are not significantly different from each other 
with respect to their likelihood scores 
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(difference in tree shapes) amount on average 
to 70% ! 
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Results SARS-CoV-2

● For all input datasets about 70 out of 100 trees 
are not significantly different from each other 
with respect to their likelihood scores

● But, their pair-wise topological differences 
(difference in tree shapes) amount on average 
to 70% !

→ extremely weak signal

→ don't draw conclusions from a single tree!

→ summarize the trees via summary statistics! 
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Summarized Trees

SARS-CoV-2 consensus tree colored by country
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Difficulty of an MSA
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S10000
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S2
.
.
S10

difficult

easy

This is all very hand-wavy →can we quantify & predict this? 
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Difficulty Prediction
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Easy
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Difficult
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What does Difficulty mean? 
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Predicting Difficulty with Pythia

● Pythia = Boosted Tree Regressor
● Supervised Regression Task 

● Predict difficulty between 0 (easy) and 1 (difficult)
● Ground truth difficulty as training target based on 

100 distinct Maximum Likelihood tree inferences
● Initially trained on 4K empirical MSAs

● Mean absolute error: 2.5% 
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Definition of Difficulty
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Prediction Features

● Eight Features
● 4 MSA attributes

– Sites-over-taxa
– patterns-over-taxa 
– % gaps
– % invariant sites

● 2 MSA information metrics
– Shannon entropy
– Bollback multinomial test statistic

● 2 Parsimony-tree-based features
– Infer 100 parsimony trees 

→ average RF-Distance

→ % unique topologies
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SARS-CoV-2 Example
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Using Pythia

● Prior to tree inference 

→ determine analysis & post-analysis setup 

→ adjust/modify MSA

→ explore data filtering & assembly strategies

→ adjust user expectations about data 
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Pythia developments

● New release (May 19, 2023) 
● Trained on 12K datasets 

– 11,108 DNA MSAs
–  979 Protein MSAs
–  460 Morphological MSAs

● Two new features 
● Improved accuracy

–     Mean absolute error: 0.07 (previously 0.09)
–     Mean absolute percentage error: 1.7% (previously 2.5%)

● Using Pyhtia
● See next slides  
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Simulation Study
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Accuracy as Function of Difficulty
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Adaptive RAxML-NG

Preprint published May 18, 2023
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Adaptive RAxML-NG
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Pythia
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Adaptive RAxML-NG Heuristics

● As a function of difficulty modify 

1) number of independent ML tree searches 

2) thoroughness of the searches

→ use an additional tree search mechanism
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Test Data & Setup

● 10K empirical MSAs from TreeBase

→ 9192 MSAs after filtering
● 5K simulated MSAs 
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Test Data & Setup

● 10K empirical MSAs from TreeBase

→ 9192 MSAs after filtering
● 5K simulated MSAs 
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Difficulty Score Distribution
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Significance Tests
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Distances between trees
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Speedups
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Speedups

Higher search effort 
→ not required
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Speedups

Higher search effort 
→ makes no sense
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Speedups

Overall accumulated speedup: approx. 3 on empirical data



Advertisement Section

● New RAxML-NG release 10 days ago 
– This is not adaptive RAxML-NG 



Speedups



Speedups
Mostly via two small,

 incremental & very technical 
improvements



Speedups
If we combine this with 

the adaptive search algorithm (another factor of 3)
→ one order of magnitude run time improvement via

three incremental improvements 
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Examined Data

● 257 linguistic data sets 

● Cognate data: 179
● Sound-class data: 65
● Morphological data: 13

● 379 biological data sets with morphological data

● All data sets are represented as a binary MSAs 

● Comparable numbers of taxa

● Linguistic MSAs tend to comprise more sites  



Entropy



Difficulty



Median of external branch lengths
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Synonyms

● Synonyms occur when collecting cognate data

● Selection is often a subjective decision

→ computer scientist’s don’t like this 

● For an exemplary dataset, we assessed 1000 different 
possibilities of selecting synonyms with Gerhard Jäger 

● We construct the corresponding MSAs and infer trees with 
RAxML-NG



Synonyms – Impact of Selection



A Better Approach:
Probabilistic MSAs



A Better Approach:
Probabilistic MSAs

Thus far: Discrete states at each site/column



A Better Approach:
Probabilistic MSAs

Idea: Use probabilistic states → the likelihood model can seamlessly handle this!  



Probabilistic MSAs

● Probabilistic MSAs allow to model uncertainties

● At each site, different symbols are observed with certain 
probabilities at the tips  

● We assume that all synonyms for a concept occur with equal 
probabilities

● Based on that, we construct a probabilistic MSA

→ we read in probability vectors instead of discrete sequences

● The approach avoids explicit selection of synonyms

● RAxML-NG allows inference on probabilistic MSAs



Synonyms – Analysis 

● We compare inferred trees to a reference tree extracted from 
glottolog

● We use the Generalized Quartet (GQ) distance, because the 
reference tree is multifurcating

● For trees based on selection of synonyms, the average GQ 
distance to the reference tree is 0.032

● For the tree inferred on the probabilistic MSA, the GQ distance 
to the reference tree is 0.019



Thank you for your attention

Listaros village, Crete
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Felsenstein Pruning Algorithm

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

1.0
0.0
0.0
0.0

0.0
0.0
1.0
0.0

0.0
0.0
0.0
1.0

1.0
0.0
0.0
0.0
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Felsenstein Pruning Algorithm

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

1.0
0.0
0.0
0.0

0.0
0.0
1.0
0.0

0.0
0.0
0.0
1.0

1.0
0.0
0.0
0.0

What if we are not sure
that we have an A here?
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Felsenstein Pruning Algorithm

A A
GT

b1

b2
b3

b4

b5 b6

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

1.0 - ε 
ε/3
ε/3
ε/3

0.0
0.0
1.0
0.0

0.0
0.0
0.0
1.0

1.0
0.0
0.0
0.0

We can model uncertainty
at the tip sequences → e.g.
sequencing error ε



Other stuff we are working on
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Scalability
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Single Cell Evolution

● Reconstructing the evolution, e.g., of cancer 
cells in a single patient is challenging
● Noisy data 
● Erroneous data 
● Little signal 
● Few & simplistic models 
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Phylogenetic Networks

● Evolution does not need to occur in a tree-like 
manner due to recombination events 

● We can model this via so-called phylogenetic 
networks 
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Phylogenetic Networks

● Evolution does not need to occur in a tree-like 
manner due to recombination events 

● We can model this via so-called phylogenetic 
networks

● The likelihood of such a network is substantially 
more difficult to compute than on a tree

→ computational challenges  
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Gene Tree Species Tree 
Reconciliation

● There are other phenomena that complicate 
evolution 
● Gene loss
● Gene transfer 
● Gene duplication 

→ gene tree ≠ species tree
● Infer & correct trees under a joint likelihood model 

comprising the phylogenetic likelihood and a 
reconciliation likelihood model
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GeneRax

● First full and efficient Maximum Likelihood 
implementation to infer gene family trees using 
a given rooted species tree under a joint 
phylogenetic & reconciliation likelihood model 
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SpeciesRax

● Goal: Simultaneously infer the gene family 
trees and the species tree under a joint 
phylogenetic/reconciliation likelihood model 
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Tournament Prediction
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Tournament Prediction
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Software Quality Assessment

● SoftWipe tool for automatic scientific software 
quality assessment (C and C++)
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Empirical Software Engineering with 
SoftWipe
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Biological Field Work
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Energy Efficiency
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Ancient DNA

● Better tools for ancient DNA analyses 
● Classic aDNA data analyses
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