

Optimizing and Parallelizing Phylogenetic
Likelihood Calculations

Alexandros Stamatakis

ERA chair – Institute of Computer Science
Fondation for Research and Technology Hellas, Greece

Associate Group Leader – Heidelberg Institute for Theoretical
Studies, Germany

Professor – Institute for theoretical Informatics, Karlsruhe Institute
of Technology, Germany

www.biocomp.gr (Crete lab)

www.exelixis-lab.org (Heidelberg lab)

http://www.biocomp.gr/
http://www.exelixis-lab.org/

The Biodiversity Computing Group

We are hiring:
stamatak@ics.forth.gr

mailto:stamatak@ics.forth.gr

3

Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization
● Parallel I/O
● Numerical Nightmares
● Energy Efficiency

4

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

5

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

6

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Commonly denoted as Q matrix:
transition rates for time dt, for time
t: P(t)=eQt

7

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

8

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

9

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

virtual root: vrvirtual root: vr

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

10

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

 P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

11

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

 P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Floating-point & memory
intensive

12

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

 P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Floating-point & memory
intensive

→ we will focus on this for the
remainder of the lecture

13

Maximum Likelihood

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

 P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Sites evolve independently →
we can compute per-site log

likelihoods in parallel :-)

14

Post-order Traversal

virtual root

15

Post-order Traversal

virtual root

16

Post-order Traversal

virtual root

AGCC

 A G C C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0

17

Post-order Traversal

virtual root

AGCC

 A G C C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0

We can save memory at the
tips via a lookup table for
these constant values

18

Post-order Traversal

virtual root

19

Post-order Traversal

virtual root

:-)

20

What happens when we compute
this inner vector?

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

21

Post-order Traversal

virtual root

AGCC

 A G C C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0

Simplify equation
as most summands
are 0 !

ACCC
 A G C C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0

 A G C C
1.0 0.0 0.0 0.0
0.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

22

Post-order Traversal

virtual root

:-)

23

Post-order Traversal

virtual root

:-)

24

Post-order Traversal

virtual root

:-)

25

Post-order Traversal

virtual root

:-)
:-)

26

Post-order Traversal

virtual root

:-)
:-)

27

Post-order Traversal

virtual root

:-)
:-)

:-)

28

Post-order Traversal

virtual root

:-)
:-)

:-)

Σ log(li)

29

Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Array at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters

30

Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Array at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters

Why are Bayesians
lazy people?

31

Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Array at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters

Bayesian programs only
require two operations so it is

easy

32

Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Array at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters

But they need to design
efficient proposal mechanisms
& get the Hastings correction

right

33

Rate Heterogeneity among Sites

● Biological phenomenon: different sites/columns evolve at distinct speeds

● Need to extend our model

ACGGGGGGGGGGGTTTTCCCCC
ATGGGGGGGGGGGTTTCCCCCC
ACCGGGGGGGGGGTTTTGCCCC
AGGGGGGGGGGGCTTTTCCCCC

34

Γ-Distribution

35

Γ-Distribution
Small α high rate heterogeneity
Large α low rate heterogeneity

36

Discrete Γ-Distribution

r0

r1
r2

r3

37

An Abstract View of Γ

rate 0 rate 1 rate 2 rate 3

length 7

LnL = log(L0 * ¼) + log(L1 * ¼) + log(L2 * ¼) + log(L3 * ¼)

38

An Abstract View of Γ

rate 0 rate 1 rate 2 rate 3

length 7

LnL = log(L0 * ¼) + log(L1 * ¼) + log(L2 * ¼) + log(L3 * ¼)

4 times higher memory consumption

39

An Abstract View of Γ

rate 0 rate 1 rate 2 rate 3

length 7

LnL = log(L0 * ¼) + log(L1 * ¼) + log(L2 * ¼) + log(L3 * ¼)

4 times more FLOPs

40

Memory Requirements

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Consumption:
What's the accumulated size of all
conditional likelihood vectors in our
tree?

41

Memory Requirements

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Consumption:
(n-2)

of CLVs

42

Memory Requirements

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Consumption:
(n-2) * m

of entries per CLV

43

Memory Requirements

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Consumption:
(n-2) * m * 4

DNA states

44

Memory Requirements

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Consumption:
(n-2) * m * 4 * 1

Rate heterogeneity:
no rate heterogeneity here

45

Memory Requirements

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Consumption:
(n-2) * m * 4 * 1 * 8 bytes

double
precision

arithmetics

46

Memory Requirements
for lazy people

Seq1Seq1
Seq2Seq2
Seq3Seq3
Seq4Seq4

AlignmentAlignment

Length: mLength: m

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

Seq 1Seq 1

Seq 2Seq 2 Seq 4Seq 4

Seq 3Seq 3
b1b1

b2b2

b5b5

b3b3

b4b4

P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T) P(A) P(C) P(G) P(T)P(A) P(C) P(G) P(T)

mm

vrvr

Prior probabilities,Prior probabilities,
Empirical base frequenciesEmpirical base frequencies

ππA A ππC C ππG G ππT T

AA
CC
GG
TT

A C G TA C G T

SubstitutionSubstitution
modelmodel

Memory Consumption:
(n-2) * m * 4 * 1 * 8 bytes

double
precision

arithmetics

47

Phylogenetics:
Memory Challenge

● Memory Footprints are becoming huge

● 2011: 190GB (Ziheng Yang)
● 2014: 1TB ≈ 140 insect transcriptomes

"Whole-genome analyses resolve early branches in
the tree of life of modern birds". Science,
46(6215):1320-1331, 2014

● 2017: 7-8 TB for ≈ 1600 insect transcriptomes
● 2019: 9TB for 350 bird genomes and 500,000 core

hours for just computing 1 single ML tree

48

Phylogenetics:
Memory Challenge

● Solutions

● Algorithmic means & data structures

● Supercomputers

● Just don't infer trees on such supermatrices

– Use gene tree ↔ species tree reconciliation methods?

→ e.g., ASTRAL or ML tools developed in my lab (GeneRax
& SpeciesRax)

→ but inference of gene trees has higher difficulty → gene
tree uncertainty

– Filter out relevant sites from alignment beforehand?

49

Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization
● Parallel I/O
● Numerical Nightmares
● Energy Efficiency

50

Use Vector Instructions
● 128 and 256 bit vector instructions worked well

● Part of production level tools
● 512 bit vector instructions → not so well (zero speedup)

● Likelihood calculations are memory bandwidth bound
● We are moving along linearly among three conditional likelihood vectors
● but don’t do so many computations per vector entry

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

Read access

Write access

51

An Example

● We can also use vector instructions for parsimony calculations

● My open source parsimony code https://github.com/stamatak/Parsimonator-1.0.2

● On my laptop

./parsimonator -p 12345 -s 125.phy -n X1

Parsimony tree [0] with length 193639 computed in 3.074347 seconds

./parsimonator-SSE3 -p 12345 -s 125.phy -n X2

Parsimony tree [0] with length 193639 computed in 1.576415 seconds

./parsimonator-AVX -p 12345 -s 125.phy -n X3

Parsimony tree [0] with length 193639 computed in 1.312245 seconds

https://github.com/stamatak/Parsimonator-1.0.2

52

An Example

● We can also use vector instructions for parsimony calculations

● My open source parsimony code https://github.com/stamatak/Parsimonator-1.0.2

● On my laptop

./parsimonator -p 12345 -s 125.phy -n X1

Parsimony tree [0] with length 193639 computed in 3.074347 seconds

./parsimonator-SSE3 -p 12345 -s 125.phy -n X2

Parsimony tree [0] with length 193639 computed in 1.576415 seconds

./parsimonator-AVX -p 12345 -s 125.phy -n X3

Parsimony tree [0] with length 193639 computed in 1.312245 seconds

Why don’t we get a good speedup for AVX (256 bit vectors)?

https://github.com/stamatak/Parsimonator-1.0.2

53

User friendly Vector Instructions:
RAxML-NG

● Will automatically chose the best available
vector instruction set

54

Optimizations we have already seen

Tip vector lookup

55

Optimizations we have already seen

Tip vector lookup Optimizations for special cases

56

Standard Optimizations

● Dedicated implementations for computing CLVs &
Tip Vector lookups

● To be found in all modern tools: RAxML-NG, IQ-
Tree, MrBayes, etc. etc.

TIP TIPTIP
INNER INNERINNER

57

Repeating Patterns

A …. A …. G …. G ….

CLV

Identical values, two times pattern AG

58

Repeating Patterns

A …. A …. G …. G ….

CLV

Detect identical patterns and omit second computation

59

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

60

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats
Up to 10-fold run-time improvements

61

Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats
Up to 10-fold run-time improvements

RAxML-NG

62

Repeating Patterns

● Implemented in RAxML-NG production code
● But, totally messes up parallelization

→ highly variable times to compute per-site
likelihoods

63

Saving Memory on Fixed Trees

Virtual root

64

Saving Memory on Fixed Trees

Virtual root

65

Saving Memory on Fixed Trees

Virtual root

66

Saving Memory on Fixed Trees

Virtual root

67

Saving Memory on Fixed Trees

Virtual root

68

Can we also do this on changing
trees?

● Trade memory for additional re-computations
● A cache-like replacement strategy
● We need to store at least log(n) + 2 conditional likelihood vectors to compute the

likelihood on any unrooted binary tree with n tips

69

The Real World

● Partitioned genomic datasets
● That’s the kind of dataset type that real users

analyze

70

Partitioned datasets
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Same underlying tree
topology!

71

Partitioned datasets
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

But with independent per-partition
branch length estimate!

→ In this case, terraces might occur!

72

Partitioned Data Example

Red Gene Yellow Gene

Sequence 1

Sequence 5

Missing Data
Data

73

Partitioned Data:
Calculating the Likelihood

74

Partitioned Data:
Calculating the Likelihood

75

Partitioned Data:
Calculating the Likelihood

76

LogLH (T) = LogLH (T|Red)

Partitioned Data:
Calculating the Likelihood

77

LogLH (T) = LogLH (T|Red) +
LogLH(T|Yellow)

Partitioned Data:
Calculating the Likelihood

78

Partitioned Data:
We calculated the Likelihood on this tree

S1 S2

S3

S4 S5

79

What's the likelihood of this topologically
different tree now?

S1 S2

S5

S4 S3

80

What's the likelihood of this topologically
different tree now?

S1 S2

S5

S4 S3

All 15 possible binary unrooted trees
for these 5 sequences have the same
likelihood score!

A terrace in tree space

Our tree may reside here

Using Terraces to accelerate
Likelihood Calculations

● Back in 2010 …. looking at SPR moves

Implicit use of Terraces

Take home message

● Sometimes don’t be such an engineer!
● 2011

Terraces

● Essentially we have an identifiability problem
here!

→ Different parameter values (tree topologies)
yield exactly the same analytical likelihood
score!

● Trees and datasets exhibiting terraces are more
frequent in published empirical studies than one
might think!

86

Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization
● Parallel I/O
● Numerical Nightmares
● Energy Efficiency

87

Levels of Parallelism

Embarrassing Parallelism

MPI, Internet, Cloud

88

Coarse-Grained Parallelism
in RAxML-NG

Master Process

Worker Processes

T0

T1 T3
T2

T4

PC-CLUSTER

Interconnection
Network

89

Bootstrapping

Original Alignment

Perturbation

compute tree compute tree compute tree

90

Bootstrapping

Original Alignment

Perturbation

compute tree compute tree compute tree

This needs to be done 100-1,000
times!
Embarrassingly parallel
problem!

91

Search Strategies
ML Analyses

good

bad

Search Space
Search Strategy

92

Levels of Parallelism

Embarrassing Parallelism

Inference Parallelism

MPI, Internet, Cloud

MPI, algorithm-dependent

93

Levels of Parallelism

Embarrassing Parallelism

Inference Parallelism

Loop-Level Parallelism

MPI, Internet, Cloud

MPI, algorithm-dependent

OpenMP, Pthreads, GPUs, FPGAs,
Clusters with fast Interconnect

94

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

95

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total
execution time !

96

Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total
execution time !
 simple fine-grained parallelization

97

Loop Level Parallelism

P

Q
R

virtual root

98

Loop Level Parallelism

P

Q
R

virtual root

99

Loop Level Parallelism

P

Q
R

virtual root

100

OpenMP parallelization

for(i = 0; i < m; i++)

P[i] = f(Q[i],R[i]);

101

OpenMP parallelization

for(i = 0; i < m; i++)

P[i] = f(Q[i],R[i]);

Iterations i and i+1 can be computed independently of each other!

102

OpenMP parallelization

for(i = 0; i < m; i++)

P[i] = f(Q[i],R[i]);

Iterations i and i+1 can be computed independently of each
other → parallelize with OpenMP

#pragma parallel for

for(i = 0; i < m; i++)

P[i] = f(Q[i],R[i]);

103

OpenMP parallelization

some other sequential code

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

104

OpenMP parallelization

some other sequential code

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

105

OpenMP parallelization

some other sequential code

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

106

OpenMP parallelization

some other sequential code

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

107

OpenMP parallelization

some other sequential code

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

P[0..49] P[50..99]

108

OpenMP parallelization

some other sequential code

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

109

Loop-Level Parallelism
→ allows to use more cache memory capacity

110

OpenMP parallelization

some other sequential code

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

Why is this not the best way
to parallelize likelihood calculations?

111

Thread Synchronizations in
parallel RAxML-NG

● Computing the likelihood of a single tree concurrently on many
cores:

● Snapshot: Just 10 seconds of runtime using 16
cores/threads

● 400 taxa, 7000 sites: 194,000 syncs
● 1500 taxa, 1200 sites: 739,000 syncs

112

Post-order Traversal

virtual root

:-)

:-)

:-)

Σ log(li)

113

Parallel Post-order Traversal

virtual root

Σ log(li)

114

Parallel Post-order Traversal

virtual root

Σ log(li)
How many times do we need to synchronize

in this tree with OpenMP?

115

Parallel Post-order Traversal

virtual root

Σ log(li)
Are so many synchronizations necessary?

116

Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score

117

Current MPI parallelization

? ?

MPI_Allreduce()

MPI_Allreduce()
-55000

-55000

-55001 -55001

P0 P1

E
xecut ion

tim
e

118

MPI_Allreduce()

● Reproducibility: Ideally we want to get bit-wise
identical results regardless of the number of
cores we use → not the case

119

Why? → distinct round off error
propagation

? ?

-55000
-55001

-55001 -55000

2 cores 4 cores

E
xecut ion

tim
e

tree searches diverge!

120

Why? → distinct round off error
propagation

? ?

-55000
-55001

-55001 -55000

2 cores 4 cores

E
xecut ion

tim
e

tree searches diverge!

Sequential versions: Can also (and did) happen in
standard version

vs. SSE3 version vs. AVX version

121

MPI_Allreduce()

● Reproducibility: Ideally we want to get bit-wise
identical results regardless of the number of cores we
use

● For this we need a reproducible MPI_Allreduce()
● Christoph Stelz "Core-Count Independent

Reproducible Reduce", Bachelor thesis, Institute of
Theoretical Computer Science, Karlsruhe Institute of
Technology, Germany, April 2022.

● Of course there is a performance trade-off → still needs
to be assessed

122

Scalability depends on dataset
Shapes!

OrangutanOrangutan A A C G T T T T -A A C G T T T T -
Gorilla Gorilla A A G G T T T - -A A G G T T T - -
ChimpChimp A - G G T T T T -A - G G T T T T -
Homo SapiensHomo Sapiens A G G A T T T T TA G G A T T T T T

Good scalability

Bad scalability

10,000 bp
55,000 taxa

1,000,000 bp
100 taxa

123

Scalability depends on dataset
Shapes!

OrangutanOrangutan A A C G T T T T -A A C G T T T T -
Gorilla Gorilla A A G G T T T - -A A G G T T T - -
ChimpChimp A - G G T T T T -A - G G T T T T -
Homo SapiensHomo Sapiens A G G A T T T T TA G G A T T T T T

Good scalability

Bad scalability

10,000 bp
55,000 taxa

1,000,000 bp
100 taxa

Rule of thumb:
≥ 1000 DNA sites per
core for good scalability

124

User friendly Parallelism:
RAxML-NG

● Will automatically chose the best parallelization
strategy depending on alignment (MSA) length

125

Likelihood Parallelization
Load Balance

● It's not that easy for partitioned datasets

→ “The Multi-Processor Scheduling Problem in Phylogenetics”, 2012

→ “The divisible load balance problem and its application to
phylogenetic inference”, 2014

● It's not that easy if the computation cost for the likelihood of a
site varies among sites

→”The divisible load balance problem with shared cost and its
application to phylogenetic inference”, 2015

→ “A novel heuristic for data distribution in massively parallel
phylogenetic inference using site repeats”, 2018

→ “Data Distribution for Phylogenetic Inference with Site Repeats via
Judicious Hypergraph Partitioning”, 2019

126

Likelihood Parallelization
Load Balance

● It's not that easy for partitioned datasets

→ “The Multi-Processor Scheduling Problem in Phylogenetics”, 2012

→ “The divisible load balance problem and its application to
phylogenetic inference”, 2014

● It's not that easy if the computation cost for the likelihood of a
site varies among sites

→”The divisible load balance problem with shared cost and its
application to phylogenetic inference”, 2015

→ “A novel heuristic for data distribution in massively parallel
phylogenetic inference using site repeats”, 2018

→ “Data Distribution for Phylogenetic Inference with Site Repeats via
Judicious Hypergraph Partitioning”, 2019

Essentially solved via approximation algorithm
with very tight bound – not RAxML-specific

3 failed attempts!

Load Balance

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

species 1
species 2
species 3
.
.
.
.
species N

We parallelize over alignment sites/columns

Load Balance

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

species 1
species 2
species 3
.
.
.
.
species N

We parallelize over alignment sites/columns

Key assumptions:
- sites can be computed independently!
- all sites have the same computational cost!

Load Balance

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

species 1
species 2
species 3
.
.
.
.
species N

→ Every gene evolves according to an independent model M
i

Load Balance

→ Every gene evolves according to an independent model M
i

→ Computing time per model is proportional to the number of sites
→ But, every partition/gene has a constant 'start-up' time C
→ C is the time for calculating P(t)=eQit

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

+
c

+
c

species 1
species 2
species 3
.
.
.
.
species N

Load Balance

 Optimization problem
 Distribute sites to p processors such that:

1. All processors have the same #sites

2. The number of accumulated constant
calculations C (i.e., # of partitions) per processor is
minimized!

 Sites of a partition with model M
i
 can be distributed

across several processors → in such a case the
cost C for model M

i
has to be payed at every

processor

Load Balance

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

+
c

species 1
species 2
species 3
.
.
.
.
species N

M
5

+
c

CPU 0 CPU 1

Solution

 Finding the optimal solution is NP-hard
 Approximation algorithm that it is only one off →

we proved that CPUs will do at most one more
'start-up' calculation with cost C than for the
optimal solution

 Using this algorithm actually improves
performance

→ theory meets practice

Results for ExaML

135

Advertisement Section

Some of our tools ….

136

ExaBayes

● Similar to MrBayes
● Speed

– On DNA datasets it's approx. 30% faster
● Convergence/quality

● Better parallel scalability
● Executed on dataset with 200 taxa &

100,000,000 sites on 32,000 cores of the
Munich Supercomputer

137

ExaBayes Scalability

138

RAxML-NG

139

RAxML-NG

What is suspicious about these plots?

140

RAxML-NG vs. IQ-Tree

141

RAxML-NG vs. IQ-Tree

● RAxML-NG found best scoring tree most often (19 out of 21 datasets)
● 1.3 – 4.5 times faster
● Parallel efficiency of up to 125% !!!!!
● RAxML-NG is generally faster & returns higher scoring trees on taxo-

rich MSAs, IQ-Tree results exhibit lower variance (if you do multiple
tree searches)

● For MSAs with strong phylogenetic signal, IQ-Tree may require
fewer searches than RAxML-NG

● RAxML-NG: A fast, scalable, and user-friendly tool for maximum
likelihood phylogenetic inference, Bioinformatics, May 2019

● By the way, the IQ-Tree guys are our friends :-)

142

Inferring Gene Trees

● Often, we want to infer gene trees on
thousands of genes to generate input for so-
called gene tree/species tree reconciliation
methods → input for ASTRAL, SpeciesRax,
or GeneRax

● How do we efficiently orchestrate such
computations on a cluster?

143

ParGenes Tool

● ParGenes: a tool for
massively parallel
model selection and
phylogenetic tree
inference on
thousands of genes
Bioinformatics 2019

● A classic scheduling
problem!

Cores not fully utilized

144

Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization
● Parallel I/O
● Numerical Nightmares
● Energy Efficiency

145

Gene Amdahl

146

Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs

147

Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs SEQ

PAR

2 CPUs

64s

148

Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs SEQ

PAR

2 CPUs

SEQ

PAR

4 CPUs

32s

64s

16s

149

Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs SEQ

PAR

2 CPUs

SEQ

PAR

4 CPUs

SEQ

PAR

8 CPUs

32s

64s

16s

150

Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs SEQ

PAR

2 CPUs

SEQ

PAR

4 CPUs

SEQ

PAR

8 CPUs

At some point execution
times will be dominated
by the sequential part of
the code!

32s

64s

16s

151

Amdahl's law

Linear speedup: n times faster with
n cores!

152

Amdahl's law

Linear speedup: n times faster with
n cores!

Fraction of code that can be
optimally parallelized

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Error checking & compression

Single CPU

01010101010101
01010000001101
010101010101

Binary file

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Error checking & compression

Single CPU

01010101010101
01010000001101
010101010101

Binary file

Parallel
ExaBayes

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Error checking & compression

Single CPU

01010101010101
01010000001101
010101010101

Binary file

Parallel
ExaBayes

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Single CPU

01010101010101
01010000001101
010101010101

concurrent
reads

Parallel
ExaBayes

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Single CPU

01010101010101
01010000001101
010101010101

concurrent
reads

Start-up reduction from 15 to
below 1 minute!

Parallel
ExaBayes

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Single CPU

01010101010101
01010000001101
010101010101

concurrent
reads

Start-up reduction from 15 to
below 1 minute!

Parallel
ExaBayes

1000 processors:
10 days versus 17 hrs
of wasted CPU time!

159

Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization
● Parallel I/O
● Numerical Nightmares
● Energy Efficiency

160

Floating Point Numbers

● Machine numbers are an imperfect mapping of the infinite real
numbers to a finite number of machine values!

161

Numerical Underflow
Conditional likelihood values become so
small that they can not be represented on a
computer any more → underflow !!!!

162

Overflow & Underflow

IEEE 754 standard for 32-bit floating point numbers
1 bit sign
8 bits exponent
23 bits significand

163

Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root

0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

164

Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root →
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

We need to apply
numerical scaling techniques

to avoid underflow!

165

Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and
smaller as we move
to the root →
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

Typical approach:
1) Check if values are too small

2) If so multiply with some large number
3) Undo those scaling multiplications (somehow) in the end

for likelihood this undoing is easy

166

What went wrong?

● For DNA models without rate heterogeneity this scaling approach worked fine

→ check if all 4 conditional likelihoods at a given CLV and site are smaller
than a minimum & multiply with large number

● For DNA models with rate heterogeneity this doesn’t work

→ jointly checking that all 16 conditional likelihoods for the 4 typical discrete
rates are smaller than a minimum doesn’t work

→ the spread of the values is too large because of the distinct rate categories

→ scale individually per rate category

→ higher computational cost

167

Single Precision?

● We know that likelihood claculations are compute- and
memory-intensive

● So why not use single-precision (32 bit) instead of
double precision (64 bit) floating point values?

● Numerics for Maximum Likelihood break down
● 10-fold increase in scaling multiplications when using

single precision

168

Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

P(t) = eQt is numerically
not easy

169

Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

P(t) = eQt is numerically
not easy

170

What went wrong?

● In RAxML we used the matrix exponential function from the
book - Numerical Recipees in C

● Especially the Intel icc compiler tended to be very
aggressive when trying to optimize this function

→ numerical breakdown
● Solution

 eigen.o : eigen.c $(GLOBAL_DEPS)

 $(CC) -c -o eigen.o eigen.c

Compile eigenvector decomposition function without
optimization flags

171

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A C G TA C G T

AA
CC
GG
TT

A C G TA C G T

L^(k)

L^(i) L^(j)

Position c

Consider that you only want to compute this triplet of conditional
likelihood vectors of fixed length n.
L^(i), L^(j), P(b_i), P(b_j) are given as input and you just compute
L^(k) as output of a micro-benchmark.
What do you expect the run-times to be if you just provide
different input vectors L^(i)’, L^(j)’ but all of length n?

172

What went wrong?

● When developing phylogenetic placement
methods, we observed some inexplicable run
time deviations for exactly this operation of about
50%

● It didn’t make any sense since we executed n
times the exact same arithmetic operations, just
on different input data

→ until we learned about de-normalized floating
point values

173

Denormalized Floating Point
Numbers

Intended to allow for gradual underflow to zero

When de-normalized values are encountered, the processing cost inside the CPU
for multiplications and additions is increased.

→ the runtimes are input-data dependent !
→ Problem with reproducibility of run time performance benchmarks

174

Denormalized Numbers

● De-normalized floating point numbers and their impact on run-times and
performance benchmark

● J. Björndalen, O. Anshus: “Trusting floating point benchmarks-are your
benchmarks really data-independent?” Applied Parallel Computing.
State of the art in Scientific Computing 2010; pp 178-188, Springer.

● Alexandre F. Tenca, Kyung-Nam Han, David Tran: “Performance
Impact of Using Denormalized Numbers in Basic Floating-point
Operations” IEEE, Forty-First Asilomar Conference on Signals,
Systems and Computers, 2007.

● The concrete example with Conditional Likelihood Vector computations
that yielded highly diverging run times due to de-normalized floating point
numbers can be found here
https://github.com/stamatak/denormalizedFloatingPointNumbers

https://github.com/stamatak/denormalizedFloatingPointNumbers

175

Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization
● Parallel I/O
● Numerical Nightmares
● Energy Efficiency

Phylogenetic Inference

CPU frequency correlates well with power for RAxML-NG

Phylogenetic Inference

Runtime x node power

Phylogenetic Inference

Runtime x node power

CPU fast enough to
match memory access
speed, everything to the
right means that we are
waiting for data

179

RAxML-NG v0.9 vs. v1.0
 energy saving

v1.0+ v0.9

-30%

default:

180

Thank you for your Attention !

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	A Current Problem: Handling Multi-Gene Alignments
	A Multi-Gene Model
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Coarse-Grained Parallelism: MPI Version of RAxML
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Loop Level Parallelism
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Thank you for your Attention !

