Optimizing and Parallelizing Phylogenetic Likelihood Calculations

Alexandros Stamatakis

ERA chair - Institute of Computer Science Fondation for Research and Technology Hellas, Greece

Associate Group Leader - Heidelberg Institute for Theoretical Studies, Germany

Professor - Institute for theoretical Informatics, Karlsruhe Institute of Technology, Germany
www.biocomp.gr (Crete lab)
www.exelixis-lab.org (Heidelberg lab)

The Biodiversity Computing Group

The Biodiversity Computing Group

Funded by the European Union

We are hiring:
stamatak@ics.forth.gr

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Maximum Likelihood

Maximum Likelihood

virtual root: vr

Maximum Likelihood

Maximum Likelihood

Maximum Likelihood

Maximum Likelihood

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

We can save memory at the tips via a lookup table for these constant values

Post-order Traversal

virtual root

Post-order Traversal

virtual root

What happens when we compute this inner vector?

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Position c

Post-order Traversal

$$
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
$$

Simplify equation as most summands are 0 !

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

Post-order Traversal

virtual root

:-)

:-)

Post-order Traversal

virtual root
:-)

Post-order Traversal

$\sum_{J} \log \left(l_{i}\right)$
 virtual root

:-)
;-)

:-)

Basic Operations Maximum Likelihood

- Compute Conditional Likelihood Array at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Length for a given Branch
- Optimize all Branch Lengths
- Optimize other Model Parameters

Basic Operations Maximum Likelihood

- Compute Conditional Likelihood Array at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Length for a given Branch
- Optimize all Branch Lengths
- Optimize other Model Parameters

Basic Operations Maximum Likelihood

- Compute Conditional Likelihood Array at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Lend for a given Branch
- Optimize all Branch Ler
- Optimize other Model P

Bayesian programs only require two operations so it is easy

Basic Operations Maximum Likelihood

- Compute Conditional Likelihood Array at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Lend for a given Branch
- Optimize all Branch Ler
- Optimize other Model P

But they need to design efficient proposal mechanisms \& get the Hastings correction right

Rate Heterogeneity among Sites

- Biological phenomenon: different sites/columns evolve at distinct speeds
- Need to extend our model

Г-Distribution

Discrete Г-Distribution

An Abstract View of Γ

An Abstract View of Γ

4 times higher memory consumption

$\operatorname{LnL}=\log (\mathrm{LO} * 1 / 4)+\log (\mathrm{L} 1 * 1 / 4)+\log (\mathrm{L} 2 * 1 / 4)+\log (\mathrm{L} 3 * 1 / 4)$

An Abstract View of Γ

4 times more FLOPs

$\operatorname{LnL}=\log (\mathrm{LO} * 1 / 4)+\log (\mathrm{L} 1 * 1 / 4)+\log (\mathrm{L} 2 * 1 / 4)+\log (\mathrm{L} 3 * 1 / 4)$

Memory Requirements

Substitution model

Prior probabilities, Empirical base frequencies

Memory Consumption:
What's the accumulated size of all conditional likelihood vectors in our tree?

Memory Requirements

Memory Requirements for lazy people

Length: m

Phylogenetics: Memory Challenge

- Memory Footprints are becoming huge
- 2011: 190GB (Ziheng Yang)
- 2014: $1 \mathrm{~TB} \approx 140$ insect transcriptomes
"Whole-genome analyses resolve early branches in the tree of life of modern birds". Science, 46(6215):1320-1331, 2014
- 2017: 7-8 TB for ≈ 1600 insect transcriptomes
- 2019: 9TB for 350 bird genomes and 500,000 core hours for just computing 1 single ML tree

Phylogenetics: Memory Challenge

- Solutions
- Algorithmic means \& data structures
- Supercomputers
- Just don't infer trees on such supermatrices
- Use gene tree \leftrightarrow species tree reconciliation methods?
\rightarrow e.g., ASTRAL or ML tools developed in my lab (GeneRax \& SpeciesRax)
\rightarrow but inference of gene trees has higher difficulty \rightarrow gene tree uncertainty
- Filter out relevant sites from alignment beforehand?

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Use Vector Instructions

- 128 and 256 bit vector instructions worked well
- Part of production level tools
- 512 bit vector instructions \rightarrow not so well (zero speedup)
- Likelihood calculations are memory bandwidth bound
- We are moving along linearly among three conditional likelihood vectors
- but don't do so many computations per vector entry

Write access

An Example

- We can also use vector instructions for parsimony calculations
- My open source parsimony code https://github.com/stamatak/Parsimonator-1.0.2
- On my laptop

```
./parsimonator -p 12345 -s 125.phy -n X1
Parsimony tree [0] with length 193639 computed in 3.074347 seconds
./parsimonator-SSE3 -p 12345 -s 125.phy -n X2
Parsimony tree [0] with length 193639 computed in 1.576415 seconds
./parsimonator-AVX -p 12345 -s 125.phy -n X3
Parsimony tree [0] with length 193639 computed in 1.312245 seconds
```


An Example

- We can also use vector instructions for parsimony calculations
- My open source parsimony code https://github.com/stamatak/Parsimonator-1.0.2
- On my laptop

```
./parsimonator -p 12345 -s 125.phy -n X1
Parsimony tree [0] with length 193639 computed in 3.074347 seconds
./parsimonator-SSE3 -p 12345 -s 125.phy -n X2
Parsimony tree [0] with length 193639 computed in 1.576415 seconds
./parsimonator-AVX -p 12345 -s 125.phy -n X3
Parsimony tree [0] with length 193639 computed in 1.312245 seconds
```

Why don't we get a good speedup for AVX (256 bit vectors)?

User friendly Vector Instructions: RAxML-NG

- Will automatically chose the best available vector instruction set

```
Analysis options:
    run mode: ML tree search
    start tree(5): random (10) + parsimony (10)
    random seed: 1657272853
    tip-inner: 0,F
    pattern compression: ON
    per-rate scalers: OFF
    site repeats: ON
    fast spr radius: AUTO
    spr subtree cutiff: 1,000000
    branch lengths: proportional (ML estimate, algorithm: NR-FAST)
    SIMD kernels: AVX2
    parallelization: coarse-grained (auto), PTHREADS (auto)
```


Optimizations we have already seen

Tip vector lookup

We can save memory at the tips via a lookup table for these constant values

17

54

Optimizations we have already seen

Tip vector lookup
Optimizations for special cases

We can save memory at the tips via a lookup table for

17

Standard Optimizations

- Dedicated implementations for computing CLVs \& Tip Vector lookups
- To be found in all modern tools: RAxML-NG, IQTree, MrBayes, etc. etc.

Repeating Patterns

Identical values, two times pattern AG
A.... A....
G G

Repeating Patterns

Detect identical patterns and omit second computation
A.... A....
G G

Repeating Patterns

Also, shorten CLV \rightarrow less memory required

A.... A....
G G

Repeating Patterns

Also, shorten CLV \rightarrow less memory required

Challenge: Efficient data structure to detect \& store repeats
Up to 10-fold run-time improvements
A.... A....
G G

Repeating Patterns

Also, shorten CLV \rightarrow less memory required

Repeating Patterns

- Implemented in RAxML-NG production code
- But, totally messes up parallelization
\rightarrow highly variable times to compute per-site likelihoods

[^0]
Saving Memory on Fixed Trees

Virtual root

Can we also do this on changing trees?

- Trade memory for additional re-computations
- A cache-like replacement strategy
- We need to store at least $\log (n)+2$ conditional likelihood vectors to compute the likelihood on any unrooted binary tree with n tips

TRADING MEMORY FOR RUNNING TIME IN PHYLOGENETIC LIKELIHOOD COMPUTATIONS

Figure 3: Different replacement strategies. The dataset was run with RAM allocations of $10 \%, 25 \%, 50 \%, 75 \%$, and 90%, of the total required memory for storing all probability vectors. Run times are averaged across 10 searches with distinct starting trees.

The Real World

- Partitioned genomic datasets
- That's the kind of dataset type that real users analyze

Partitioned datasets

Partitioned datasets

Partitioned Data Example

Red Gene Yellow Gene

Sequence 1

Sequence 5

Partitioned Data: Calculating the Likelihood

Partitioned Data:

 We calculated the Likelihood on this tree

What's the likelihood of this topologically different tree now?

What's the likelihood of this topologically different tree now?

A terrace in tree space

Our tree may reside here

Using Terraces to accelerate Likelihood Calculations

- Back in 2010 looking at SPR moves
subtree for gene i

Implicit use of Terraces

```
JOURNAL ARTICLE
Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing data \({ }^{\circ}\)
Alexandros Stamatakis , Nikolaos Alachiotis
Bioinformatics, Volume 26, Issue 12, June 2010, Pages i132-i139,
https://doi.org/10.1093/bioinformatics/btq205
Published: 01 June 2010
```

Table 1. Speedups of mesh-based likelihood approach versus standard approach

Dataset	Model optimization	Fast SPR	Slow SPR
d59_8	1.30	2.04	1.59
d94_1487	5.56	16.69	4.41
d126_34	1.34	1.79	1.80
d404_11	3.05	4.91	3.51
d2177_68	11.24	16.08	10.26
d37831_6	3.86	5.36	3.99

Take home message

- Sometimes don't be such an engineer!
- 2011

Terraces in Phylogenetic Tree Space
MUCHAEL 1. SARDEPSON, MICHELIEM MCMAHON, AND MIKE STEE AUThors Info \& Affiliations

$\begin{array}{llll} & 248 & 34 & 71\end{array}$

Terraces

- Essentially we have an identifiability problem here!
\rightarrow Different parameter values (tree topologies)
yield exactly the same analytical likelihood score!
- Trees and datasets exhibiting terraces are more frequent in published empirical studies than one might think!

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Levels of Parallelism

Embarrassing Parallelism
MPI, Internet, Cloud

Coarse-Grained Parallelism in RAxML-NG

PC-CLUSTER

Bootstrapping

Original Alignment

Bootstrapping

Original Alignment

Search Strategies ML Analyses

Levels of Parallelism

Embarrassing Parallelism
MPI, Internet, Cloud
MPI, algorithm-dependent

Levels of Parallelism

Embarrassing Parallelism
MPI, Internet, Cloud
Inference Parallelism
MPI, algorithm-dependent

Loop-Level Parallelism
OpenMP, Pthreads, GPUs, FPGAs, Clusters with fast Interconnect

Loop Level Parallelism

 virtual root
$P[i]=f(Q[i], R[i])$

Loop Level Parallelism

virtual root

$$
P[i]=f(Q[i], R[i])
$$

Loop Level Parallelism

virtual root

Loop Level Parallelism virtual root

Loop Level Parallelism

 virtual root

Loop Level Parallelism

 virtual root

OpenMP parallelization

$$
\begin{aligned}
& \text { for }(i=0 ; i<m ; i++) \\
& \quad P[i]=f(Q[i], R[i]) ;
\end{aligned}
$$

OpenMP parallelization

$$
\begin{aligned}
& \text { for }(i=0 ; i<m ; i++) \\
& \quad P[i]=f(Q[i], R[i]) ;
\end{aligned}
$$

Iterations i and $i+1$ can be computed independently of each other!

OpenMP parallelization

$$
\begin{aligned}
& \text { for }(i=0 ; i<m ; i++) \\
& \quad P[i]=f(Q[i], R[i]) ;
\end{aligned}
$$

Iterations i and $i+1$ can be computed independently of each other \rightarrow parallelize with OpenMP
\#pragma parallel for

$$
\begin{aligned}
& \text { for }(i=0 ; i<m ; i++) \\
& \quad P[i]=f(Q[i], R[i]) ;
\end{aligned}
$$

OpenMP parallelization

some other sequential code \#pragma parallel for
for(i = 0; i < 100; i++)

$$
P[i]=f(Q[i], R[i]) ;
$$

some other sequential code

OpenMP parallelization

some other sequential code
\#pragma parallel for
for(i = 0; i < 100; i++)
$P[i]=f(Q[i], R[i]) ;$
some other sequential code

OpenMP parallelization

some other sequential code \#pragma parallel for for(i = 0; i < 100; i++)

$$
P[i]=f(Q[i], R[i]) ;
$$

some other sequential code

OpenMP parallelization

some other sequential code \#pragma parallel for for(i = 0; i < 100; i++)

$$
P[i]=f(Q[i], R[i]) ;
$$

some other sequential code

OpenMP parallelization

some other sequential code \#pragma parallel for for(i $=0 ; i<100 ; i++)$

$$
P[i]=f(Q[i], R[i]) ;
$$

some other sequential code

OpenMP parallelization

some other sequential code \#pragma parallel for for(i = 0; i < 100; i++)

$$
P[i]=f(Q[i], R[i]) ;
$$

some other sequential code

Loop-Level Parallelism \rightarrow allows to use more cache memory capacity

Breaterzas cypeise15 sriexiem199 Sperterobat sperimeles Srisuiterg4 Stuecibexopg Speaterlez sruexiem 72

OpenMP parallelization

some other sequential code \#pragma parallel for for(i = 0; i < 100; i++)

$$
P[i]=f(Q[i], R[i]) ;
$$

some other sequential code

Why is this not the best way to parallelize likelihood calculations?

Thread Synchronizations in parallel RAxML-NG

- Computing the likelihood of a single tree concurrently on many cores:
- Snapshot: Just 10 seconds of runtime using 16 cores/threads
- 400 taxa, 7000 sites: 194,000 syncs
- 1500 taxa, 1200 sites: 739,000 syncs

Post-order Traversal

$\Sigma \log \left(l_{i}\right)$
virtual root

:-)

Parallel Post-order Traversal

Parallel Post-order Traversal

Parallel Post-order Traversal

Parallel Post-order Traversal

Overall Score

Δ

Current MP I parallelization

P0

P1

MPI_Allreduce()

MPI_Allreduce()

- Reproducibility: Ideally we want to get bit-wise identical results regardless of the number of cores we use \rightarrow not the case

Why? \rightarrow distinct round off error propagation

Why? \rightarrow distinct round off error propagation

2 cores
4 cores

-55001

Sequential versions: Can also (and did) happen in standard version vs. SSE3 version vs. AVX version
tree searches diverge!
MPI_Allreduce()

- Reproducibility: Ideally we want to get bit-wise identical results regardless of the number of cores we use
- For this we need a reproducible MPI_Allreduce ()
- Christoph Stelz "Core-Count Independent Reproducible Reduce", Bachelor thesis, Institute of Theoretical Computer Science, Karlsruhe Institute of Technology, Germany, April 2022.
- Of course there is a performance trade-off \rightarrow still needs to be assessed

Scalability depends on dataset Shapes!

Good scalability

1,000,000 bp 100 taxa

Scalability depends on dataset Shapes!

Rule of thumb:
 ≥ 1000 DNA sites per core for good scalability

Orangutan
AACGTTTGorilla Chimp Homo Sapiens A G G A T T T T T

Good scalability

1,000,000 bp
100 taxa

User friendly Parallelism: RAxML-NG

```
Analysis options:
    run mode: ML tree search
    start tree(s): random (10) + parsimony (10)
    random seed: 1657272853
    tip-inner: OFF
    pattern compression: ON
    per-rate scalers: OFF
    site repeats: ON
    fast spr radius: AUTO
    spr subtree cutoff: 1.000000
    branch lengths: proportional (ML estimate, algorithm: NR-FAST)
    SIMD kernels: AVX2
    parallelization: coarse-grained (auto), PTHREADS (auto)
```

- Will automatically chose the best parallelization strategy depending on alignment (MSA) length

Likelihood Parallelization Load Balance

- It's not that easy for partitioned datasets
\rightarrow "The Multi-Processor Scheduling Problem in Phylogenetics", 2012
\rightarrow "The divisible load balance problem and its application to phylogenetic inference", 2014
- It's not that easy if the computation cost for the likelihood of a site varies among sites
\rightarrow "The divisible load balance problem with shared cost and its application to phylogenetic inference", 2015
\rightarrow "A novel heuristic for data distribution in massively parallel phylogenetic inference using site repeats", 2018
\rightarrow "Data Distribution for Phylogenetic Inference with Site Repeats via Judicious Hypergraph Partitioning", 2019

Likelihood Parallelization Essentially solved via approximation algorithm with very tight bound - not RAxML-specific

- It's not that easy for partitioned \rightarrow "The Multi-Processor Sched 19 Problem in Phylogenetics", 2012
\rightarrow "The divisible load balance problem and its application to phylogenetic inference", 2014
- It's not that easy if the computation cost for the likelihood of a site varies among sites
\rightarrow "The divisible load balance problem with shared cost and its application to phylogenetic inference", 2015
\rightarrow "A novel heuristic for data distribution in massively parallel phylogenetic inference using site repeats", 2018
\rightarrow "Data Distribution for Phylogenetic Inference with Site Repeats via Judicious Hypergraph Partitioning", 2019

Load Balance

species 1 species 2 species 3
\cdot
species N

We parallelize over alignment sites/columns

Load Balance

We parallelize over alignment sites/columns

Key assumptions:

- sites can be computed independently!
- all sites have the same computational cost!

Load Balance

species N

\rightarrow Every gene evolves according to an independent model M_{i}

Load Balance

species N

\rightarrow Every gene evolves according to an independent model M_{i}
\rightarrow Computing time per model is proportional to the number of sites
\rightarrow But, every partition/gene has a constant 'start-up' time C
$\rightarrow C$ is the time for calculating $P(t)=e^{Q, t}$

Load Balance

- Optimization problem
- Distribute sites to p processors such that:

1. All processors have the same \#sites
2. The number of accumulated constant calculations C (i.e., \# of partitions) per processor is minimized!

- Sites of a partition with model M_{i} can be distributed across several processors \rightarrow in such a case the cost C for model M_{i} has to be payed at every processor

Load Balance

CPU $0 \quad$ CPU 1

species 1 species 2 species 3									

Solution

- Finding the optimal solution is NP-hard
- Approximation algorithm that it is only one off \rightarrow we proved that CPUs will do at most one more 'start-up' calculation with cost C than for the optimal solution
- Using this algorithm actually improves performance
\rightarrow theory meets practice

Results for ExaMI

(a) Runtimes on 24 cores.

(b) Runtimes on 48 cores.

Fig. 4. Runtime comparison for ExaML employing algoritm LoadBalance, the cyclic data distribution scheme, or the whole-partition data distribution scheme.

Advertisement Section

Some of our tools

ExaBayes

- Similar to MrBayes
- Speed
- On DNA datasets it's approx. 30\% faster
- Convergence/quality
- Better parallel scalability
- Executed on dataset with 200 taxa \& $100,000,000$ sites on 32,000 cores of the Munich Supercomputer

ExaBayes Scalability

 [\%] әэиешлолəд ןəןелед

RAxML-NG

RAxML-NG

What is suspicious about these plots?

RAxML-NG VS. IQ-Tree

RAxML-NG VS. IQ-Tree

- RAxML-NG found best scoring tree most often (19 out of 21 datasets)
- 1.3 - 4.5 times faster
- Parallel efficiency of up to 125% !!!!!
- RAxML-NG is generally faster \& returns higher scoring trees on taxorich MSAs, IQ-Tree results exhibit lower variance (if you do multiple tree searches)
- For MSAs with strong phylogenetic signal, IQ-Tree may require fewer searches than RAxML-NG
- RAxML - NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference, Bioinformatics, May 2019
- By the way, the IQ-Tree guys are our friends :-)

Inferring Gene Trees

- Often, we want to infer gene trees on thousands of genes to generate input for socalled gene tree/species tree reconciliation methods \rightarrow input for ASTRAL, SpeciesRax, or GeneRax
- How do we efficiently orchestrate such computations on a cluster?

ParGenes Tool

- ParGenes: a tool for massively parallel model selection and phylogenetic tree inference on thousands of genes Bioinformatics 2019
- A classic scheduling problem!

cores

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Gene Amdahl

Amdahl's Law

Amdahl's Law

Amdahl's Law

Amdahl's Law

Amdahl's Law

Amdahl's law

Amdahl's law

Linear speedup: n times faster with n cores!

Fraction of code that can be optimally parallelized

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Binary file

Error checking \& compression

I/O in ExaBayes

Parallel
ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Binary file

Error checking \& compression

I/O in ExaBayes

Parallel
ExaBayes

I/O in ExaBayes

Parallel

ExaBayes

T1 ACGT			
T2 ACC-			
T3 ACGG			
T4 AAGC		$>\quad$ Parser \quad	01010101010101
:---			
0101000001101			
010101010101			

Plain text file

concurrent reads

I/O in ExaBayes

Parallel

ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
Parser
0101010101G101

T4 AAGC
01010000001101
010101010101

Plain text file

concurrent reads

Start-up reduction from 15 to
 below 1 minute!

//O in ExaBayes

Parallel
ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

1000 processors: 10 days versus 17 hrs of wasted CPU time!

Plain text file

Start-up reduction from 15 to below 1 minute!

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Floating Point Numbers

- Machine numbers are an imperfect mapping of the infinite real numbers to a finite number of machine values!

Numerical Underflow

Conditional likelihood values become so small that they can not be represented on a computer any more \rightarrow underflow !!!!

Overflow \& Underflow

IEEE 754 standard for 32-bit floating point numbers
1 bit sign
8 bits exponent
23 bits significand

Post-order Traversal preventing underflow

\

Values in conditional likelihood vectors get smaller and smaller as we move to the root

Post-order Traversal preventing underflow

\

Values in conditional likelihood vectors get smaller and smaller as we move to the root \rightarrow this needs to be handled!

Post-order Traversal preventing underflow

Typical approach:

1) Check if values are too small
2) If so multiply with some large number
3) Undo those scaling multiplications (somehow) in the end for likelihood this undoing is easy
virtual root

What went wrong?

- For DNA models without rate heterogeneity this scaling approach worked fine \rightarrow check if all 4 conditional likelihoods at a given CLV and site are smaller than a minimum \& multiply with large number
- For DNA models with rate heterogeneity this doesn't work
\rightarrow jointly checking that all 16 conditional likelihoods for the 4 typical discrete rates are smaller than a minimum doesn't work
\rightarrow the spread of the values is too large because of the distinct rate categories
\rightarrow scale individually per rate category
\rightarrow higher computational cost
> BMC Bioinformatics. 2011 Dec 13;12:470. doi: 10.1186/1471-2105-12-470.
Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees

Fernando Izquierdo-Carrasco ${ }^{1}$, Stephen A Smith, Alexandros Stamatakis
Affiliations + expand
PMID: 22165866 PMCID: PMC3267785 DOI: 10.1186/1471-2105-12-470 Q Pevernte
Free PMC article

Single Precision?

- We know that likelihood claculations are compute- and memory-intensive
- So why not use single-precision (32 bit) instead of double precision (64 bit) floating point values?
- Numerics for Maximum Likelihood break down
- 10-fold increase in scaling multiplications when using single precision

```
Accuracy and Performance of Single versus Double Precision
Arithmetics for Maximum Likelihood Phylogeny
Reconstruction

\section*{Felsenstein pruning}
\(\mathrm{P}(\mathrm{t})=\mathrm{e}^{\mathrm{Qt}}\) is numerically not easy
\[
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
\]


L^(j)

Position c

\section*{Felsenstein pruning}

\section*{NINETEEN DUBIOUS WAYS TO COMPUTE THE EXPONENTIAL OF A MATRIX*}

CLEVE MOLER \(\dagger\) AND CHARLES VAN LOAN \(\ddagger\)
Abstract. In principle, the exponential of a matrix could be computed in many ways. Methods involving approximation theory, differential equations, the matrix eigenvalues, and the matrix characteristic polynomial have been proposed. In practice, consideration of computational stability and efficiency indicates that some of the methods are preferable to others, but that none are completely satisfactory.


\section*{Position c}

\section*{What went wrong?}
- In RAxML we used the matrix exponential function from the book - Numerical Recipees in C
- Especially the Intel icc compiler tended to be very aggressive when trying to optimize this function
\(\rightarrow\) numerical breakdown
- Solution
\[
\begin{aligned}
\text { eigen.○ }: & \text { eigen.c } \$\left(G L O B A L \_D E P S\right) \\
& \$(C C) \text {-c -o eigen.o eigen.c }
\end{aligned}
\]

Compile eigenvector decomposition function without optimization flags

Consider that you only want to compute this triplet of conditional likelihood vectors of fixed length \(n\).
\(L^{\wedge}(i), L^{\wedge}(j), P\left(b \_i\right), P\left(b \_j\right)\) are given as input and you just compute \(L^{\wedge}(k)\) as output of a micro-benchmark.
What do you expect the run-times to be if you just provide different input vectors \(L^{\wedge}(i)^{\prime}, L^{\wedge}(j)^{\prime}\) but all of length \(n\) ?
\[
\vec{L}_{A}^{(k)}(c)=\left(\sum_{S=A}^{T} P_{A S}\left(b_{i}\right) \vec{L}_{S}^{(i)}(c)\right)\left(\sum_{S=A}^{T} P_{A S}\left(b_{j}\right) \vec{L}_{S}^{(j)}(c)\right)
\]


\section*{What went wrong?}
- When developing phylogenetic placement methods, we observed some inexplicable run time deviations for exactly this operation of about 50\%
- It didn't make any sense since we executed \(n\) times the exact same arithmetic operations, just on different input data
\(\rightarrow\) until we learned about de-normalized floating point values

\section*{Denormalized Floating Point Numbers}


Intended to allow for gradual underflow to zero
When de-normalized values are encountered, the processing cost inside the CPU for multiplications and additions is increased.
\(\rightarrow\) the runtimes are input-data dependent!
\(\rightarrow\) Problem with reproducibility of run time performance benchmarks

\section*{Denormalized Numbers}
- De-normalized floating point numbers and their impact on run-times and performance benchmark
- J. Björndalen, O. Anshus: "Trusting floating point benchmarks-are your benchmarks really data-independent?" Applied Parallel Computing. State of the art in Scientific Computing 2010; pp 178-188, Springer.
- Alexandre F. Tenca, Kyung-Nam Han, David Tran: "Performance Impact of Using Denormalized Numbers in Basic Floating-point Operations" IEEE, Forty-First Asilomar Conference on Signals, Systems and Computers, 2007.
- The concrete example with Conditional Likelihood Vector computations that yielded highly diverging run times due to de-normalized floating point numbers can be found here
https://github.com/stamatak/denormalizedFloatingPointNumbers

\section*{Outline}
- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

\section*{Phylogenetic Inference}


Variable - Power (CPU+RAM) • Power (Node)
CPU frequency correlates well with power for RAxML-NG

\section*{Phylogenetic Inference}


\section*{Phylogenetic Inference}


\section*{RAxML-NG v0.9 vs. v1.0 energy saving}


Consumed energy (Wh)


Average power (W)


\section*{Thank you for your Attention !}
```


[^0]: JOURNAL ARTICLE
 Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations ©
 K. Kobert, A. Stamatakis, T. Flouri Author Notes

 Systematic Biology, Volume 66, Issue 2, March 2017, Pages 205-217,
 https://doi.org/10.1093/sysbio/syw075
 Published: 29 August 2016 Article history v

