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Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization 
● Parallel I/O 
● Numerical Nightmares 
● Energy Efficiency
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Commonly denoted as Q matrix: 
transition rates for time dt, for time 
t: P(t)=eQt
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Floating-point & memory 
intensive

→ we will focus on this for the 
remainder of the lecture
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Sites evolve independently → 
we can compute per-site log 

likelihoods in parallel :-)
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Post-order Traversal

virtual root
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Post-order Traversal

virtual root

AGCC

  A   G   C   C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
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Post-order Traversal

virtual root

AGCC

  A   G   C   C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0

We can save memory at the 
tips via a lookup table for 
these constant values 
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Post-order Traversal

virtual root
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Post-order Traversal

virtual root

:-)
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What happens when we compute 
this inner vector?
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Post-order Traversal

virtual root

AGCC

  A   G   C   C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0

Simplify equation
as most summands
are 0 !

ACCC
  A   G   C   C
1.0 0.0 0.0 0.0
0.0 0.0 1.0 1.0
0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0

  A   G   C   C
1.0 0.0 0.0 0.0
0.0 1.0 1.0 1.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0
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Post-order Traversal

virtual root

:-)
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Post-order Traversal

virtual root

:-)
:-)

:-)

Σ log(li)
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Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Array at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters
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Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Array at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters

Why are Bayesians
lazy people? 
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Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Array at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters

Bayesian programs only 
require two operations so it is 

easy
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Basic Operations
Maximum Likelihood

● Compute Conditional Likelihood Array at an inner node

● Compute Likelihood at Virtual Root

● Optimize a Branch Length for a given Branch

● Optimize all Branch Lengths

● Optimize other Model Parameters

But they need to design 
efficient proposal mechanisms
& get the Hastings correction 

right
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Rate Heterogeneity among Sites

● Biological phenomenon: different sites/columns evolve at distinct speeds

● Need to extend our model

ACGGGGGGGGGGGTTTTCCCCC
ATGGGGGGGGGGGTTTCCCCCC
ACCGGGGGGGGGGTTTTGCCCC
AGGGGGGGGGGGCTTTTCCCCC
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Γ-Distribution
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Γ-Distribution
Small α high rate heterogeneity
Large α low rate heterogeneity
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Discrete Γ-Distribution

r0

r1
r2

r3
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An Abstract View of Γ

rate 0 rate 1 rate 2 rate 3

length 7

LnL = log(L0 * ¼) + log(L1 * ¼) + log(L2 * ¼) + log(L3 * ¼) 
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An Abstract View of Γ

rate 0 rate 1 rate 2 rate 3

length 7

LnL = log(L0 * ¼) + log(L1 * ¼) + log(L2 * ¼) + log(L3 * ¼) 

4 times higher memory consumption
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An Abstract View of Γ

rate 0 rate 1 rate 2 rate 3

length 7

LnL = log(L0 * ¼) + log(L1 * ¼) + log(L2 * ¼) + log(L3 * ¼) 

4 times more FLOPs
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Memory Requirements
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Memory Consumption:
What's the accumulated size of all 
conditional likelihood vectors in our 
tree? 
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Memory Consumption:
(n-2) 

# of CLVs
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Memory Consumption:
(n-2) * m * 4 

# DNA states
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Memory Consumption:
(n-2) * m * 4 * 1

Rate heterogeneity: 
no rate heterogeneity here
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Memory Consumption:
(n-2) * m * 4 * 1 * 8 bytes

double
precision

arithmetics
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Memory Requirements
for lazy people
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Phylogenetics:
Memory Challenge

● Memory Footprints are becoming huge

● 2011: 190GB (Ziheng Yang)
● 2014: 1TB ≈ 140 insect transcriptomes

"Whole-genome analyses resolve early branches in 
the tree of life of modern birds". Science, 
46(6215):1320-1331, 2014

● 2017: 7-8 TB for ≈ 1600 insect transcriptomes
● 2019: 9TB for 350 bird genomes and 500,000 core 

hours for just computing 1 single ML tree   
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Phylogenetics:
Memory Challenge

● Solutions

● Algorithmic means & data structures 

● Supercomputers

● Just don't infer trees on such supermatrices 

– Use gene tree ↔ species tree reconciliation methods? 

→ e.g., ASTRAL or ML tools developed in my lab (GeneRax 
& SpeciesRax)

→ but inference of gene trees has higher difficulty → gene 
tree uncertainty

– Filter out relevant sites from alignment beforehand? 
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Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization 
● Parallel I/O 
● Numerical Nightmares 
● Energy Efficiency
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Use Vector Instructions
● 128 and 256 bit vector instructions worked well 

● Part of production level tools  
● 512 bit vector instructions → not so well (zero speedup) 

● Likelihood calculations are memory bandwidth bound
● We are moving along linearly among three conditional likelihood vectors 
● but don’t do so many computations per vector entry 

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

Read access

Write access
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An Example

● We can also use vector instructions for parsimony calculations

● My open source parsimony code https://github.com/stamatak/Parsimonator-1.0.2  

● On my laptop 

./parsimonator -p 12345 -s 125.phy -n X1

Parsimony tree [0] with length 193639 computed in 3.074347 seconds

./parsimonator-SSE3 -p 12345 -s 125.phy -n X2

Parsimony tree [0] with length 193639 computed in 1.576415 seconds 

./parsimonator-AVX -p 12345 -s 125.phy -n X3

Parsimony tree [0] with length 193639 computed in 1.312245 seconds

https://github.com/stamatak/Parsimonator-1.0.2
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An Example

● We can also use vector instructions for parsimony calculations

● My open source parsimony code https://github.com/stamatak/Parsimonator-1.0.2  

● On my laptop 

./parsimonator -p 12345 -s 125.phy -n X1

Parsimony tree [0] with length 193639 computed in 3.074347 seconds

./parsimonator-SSE3 -p 12345 -s 125.phy -n X2

Parsimony tree [0] with length 193639 computed in 1.576415 seconds 

./parsimonator-AVX -p 12345 -s 125.phy -n X3

Parsimony tree [0] with length 193639 computed in 1.312245 seconds

Why don’t we get a good speedup for AVX (256 bit vectors)? 

https://github.com/stamatak/Parsimonator-1.0.2
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User friendly Vector Instructions: 
RAxML-NG

● Will automatically chose the best available 
vector instruction set 
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Optimizations we have already seen

Tip vector lookup
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Optimizations we have already seen

Tip vector lookup Optimizations for special cases
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Standard Optimizations

● Dedicated implementations for computing CLVs & 
Tip Vector lookups

● To be found in all modern tools: RAxML-NG, IQ-
Tree, MrBayes, etc. etc.  

TIP TIPTIP
INNER INNERINNER
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Repeating Patterns

A …. A …. G …. G ….

CLV

Identical values, two times pattern AG
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Repeating Patterns

A …. A …. G …. G ….

CLV

Detect identical patterns and omit second computation
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Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required
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Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats 
Up to 10-fold run-time improvements
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Repeating Patterns

A …. A …. G …. G ….

CLV

Also, shorten CLV → less memory required

Challenge: Efficient data structure to
detect & store repeats 
Up to 10-fold run-time improvements

RAxML-NG
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Repeating Patterns

● Implemented in RAxML-NG production code
● But, totally messes up parallelization 

→ highly variable times to compute per-site 
likelihoods 
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Saving Memory on Fixed Trees

Virtual root
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Saving Memory on Fixed Trees

Virtual root
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Saving Memory on Fixed Trees

Virtual root
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Saving Memory on Fixed Trees

Virtual root
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Saving Memory on Fixed Trees

Virtual root
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Can we also do this on changing 
trees? 

● Trade memory for additional re-computations
● A cache-like replacement strategy
● We need to store at least log(n) + 2 conditional likelihood vectors to compute the 

likelihood on any unrooted binary tree with n tips 
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The Real World

● Partitioned genomic datasets 
● That’s the kind of dataset type that real users 

analyze 
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Partitioned datasets
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

Same underlying tree
topology!



  

71

Partitioned datasets
Gene 0 Gene 1 Gene 4Gene 3Gene 2

α0

GTR0

α4

GTR4

α3

GTR3

α2

GTR2

α1

GTR1

But with independent per-partition 
branch length estimate! 

→ In this case, terraces might occur! 
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Partitioned Data Example

Red Gene      Yellow Gene 

Sequence 1

Sequence 5

Missing Data 
Data
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Partitioned Data: 
Calculating the Likelihood
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Partitioned Data: 
Calculating the Likelihood
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Partitioned Data: 
Calculating the Likelihood
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LogLH (T) = LogLH (T|Red)

Partitioned Data: 
Calculating the Likelihood
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LogLH (T) = LogLH (T|Red) +
LogLH(T|Yellow)

Partitioned Data: 
Calculating the Likelihood
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Partitioned Data:
We calculated the Likelihood on this tree

S1 S2

S3

S4 S5
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What's the likelihood of this topologically 
different tree now?

S1 S2

S5

S4 S3
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What's the likelihood of this topologically 
different tree now?

S1 S2

S5

S4 S3

All 15 possible binary unrooted trees
for these 5 sequences have the same
likelihood score!



  

A terrace in tree space

Our tree may reside here



  

Using Terraces to accelerate 
Likelihood Calculations

● Back in 2010 …. looking at SPR moves 



  

Implicit use of Terraces



  

Take home message

● Sometimes don’t be such an engineer! 
● 2011



  

Terraces

● Essentially we have an identifiability problem 
here! 

→ Different parameter values (tree topologies) 
yield exactly the same analytical likelihood 
score!

● Trees and datasets exhibiting terraces are more 
frequent in published empirical studies than one 
might think!
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Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization 
● Parallel I/O 
● Numerical Nightmares 
● Energy Efficiency
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Levels of Parallelism

Embarrassing Parallelism

MPI, Internet, Cloud



  

88

Coarse-Grained Parallelism
in RAxML-NG

Master Process

Worker Processes

T0

T1 T3
T2

T4

PC-CLUSTER

Interconnection
Network
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Bootstrapping

Original Alignment

Perturbation

compute tree compute tree compute tree
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Bootstrapping

Original Alignment

Perturbation

compute tree compute tree compute tree

This needs to be done 100-1,000 
times!
Embarrassingly parallel 
problem!
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Search Strategies
ML Analyses

good

bad

Search Space
Search Strategy
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Levels of Parallelism

Embarrassing Parallelism

Inference Parallelism

MPI, Internet, Cloud

MPI, algorithm-dependent
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Levels of Parallelism

Embarrassing Parallelism

Inference Parallelism

Loop-Level Parallelism

MPI, Internet, Cloud

MPI, algorithm-dependent

OpenMP, Pthreads, GPUs, FPGAs, 
Clusters with fast Interconnect
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total 
execution time !
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Loop Level Parallelism

P

Q
R

P[i] = f(Q[i], R[i])

virtual root

This operation uses ≥ 90% of total 
execution time !
 simple fine-grained parallelization
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Loop Level Parallelism

P

Q
R

virtual root
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Loop Level Parallelism

P

Q
R

virtual root
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Loop Level Parallelism

P

Q
R

virtual root
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OpenMP parallelization

for(i = 0; i < m; i++)

P[i] = f(Q[i],R[i]);
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OpenMP parallelization

for(i = 0; i < m; i++)

P[i] = f(Q[i],R[i]);

Iterations i and i+1 can be computed independently of each other!
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OpenMP parallelization

for(i = 0; i < m; i++)

P[i] = f(Q[i],R[i]);

Iterations i and i+1 can be computed independently of each 
other → parallelize with OpenMP 

#pragma parallel for

for(i = 0; i < m; i++)

P[i] = f(Q[i],R[i]);



  

103

OpenMP parallelization

some other sequential code 

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code
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OpenMP parallelization

some other sequential code 

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code
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OpenMP parallelization

some other sequential code 

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code
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OpenMP parallelization

some other sequential code 

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code
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OpenMP parallelization

some other sequential code 

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

P[0..49] P[50..99]
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OpenMP parallelization

some other sequential code 

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code
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Loop-Level Parallelism
→ allows to use more cache memory capacity
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OpenMP parallelization

some other sequential code 

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

Why is this not the best way 
to parallelize likelihood calculations?



  

111

Thread Synchronizations in 
parallel RAxML-NG

● Computing the likelihood of a single tree concurrently on many 
cores:

● Snapshot: Just 10 seconds of runtime using 16 
cores/threads

● 400 taxa, 7000 sites: 194,000 syncs
● 1500 taxa, 1200 sites: 739,000 syncs
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Post-order Traversal

virtual root

:-)

:-)

:-)

Σ log(li)
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Parallel Post-order Traversal

virtual root

Σ log(li)
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Parallel Post-order Traversal

virtual root

Σ log(li)
How many times do we need to synchronize 

in this tree with OpenMP?  
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Parallel Post-order Traversal

virtual root

Σ log(li)
Are so many synchronizations necessary?  
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Parallel Post-order Traversal

Σ log(li) Σ log(li)

+

Overall Score
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Current MPI parallelization

? ?

MPI_Allreduce()

MPI_Allreduce()
-55000

-55000

-55001 -55001

P0 P1

E
xecut ion 

tim
e



  

118

MPI_Allreduce()

● Reproducibility: Ideally we want to get bit-wise 
identical results regardless of the number of 
cores we use → not the case  
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Why? → distinct round off error 
propagation 

? ?

-55000
-55001

-55001 -55000

2 cores 4 cores

E
xecut ion 

tim
e

tree searches diverge!
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Why? → distinct round off error 
propagation 

? ?

-55000
-55001

-55001 -55000

2 cores 4 cores

E
xecut ion 

tim
e

tree searches diverge!

Sequential versions: Can also (and did) happen in 
standard version 

vs. SSE3 version vs. AVX version
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MPI_Allreduce()

● Reproducibility: Ideally we want to get bit-wise 
identical results regardless of the number of cores we 
use 

● For this we need a reproducible MPI_Allreduce() 
● Christoph Stelz "Core-Count Independent 

Reproducible Reduce", Bachelor thesis, Institute of 
Theoretical Computer Science, Karlsruhe Institute of 
Technology, Germany, April 2022.

● Of course there is a performance trade-off → still needs 
to be assessed 
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Scalability depends on dataset 
Shapes!

OrangutanOrangutan A A C G T T T T -A A C G T T T T -
Gorilla Gorilla A A G G T T T  - -A A G G T T T  - -
ChimpChimp A -  G G T T T T -A -  G G T T T T -
Homo SapiensHomo Sapiens A G G A T T T T TA G G A T T T T T

Good scalability

Bad scalability

10,000 bp
55,000 taxa

1,000,000 bp
100 taxa
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Scalability depends on dataset 
Shapes!

OrangutanOrangutan A A C G T T T T -A A C G T T T T -
Gorilla Gorilla A A G G T T T  - -A A G G T T T  - -
ChimpChimp A -  G G T T T T -A -  G G T T T T -
Homo SapiensHomo Sapiens A G G A T T T T TA G G A T T T T T

Good scalability

Bad scalability

10,000 bp
55,000 taxa

1,000,000 bp
100 taxa

Rule of thumb:
≥ 1000  DNA sites per 
core for good scalability
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User friendly Parallelism: 
RAxML-NG

 

● Will automatically chose the best parallelization 
strategy depending on alignment (MSA) length  
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Likelihood Parallelization
Load Balance

● It's not that easy for partitioned datasets

→ “The Multi-Processor Scheduling Problem in Phylogenetics”, 2012

→ “The divisible load balance problem and its application to 
phylogenetic inference”, 2014

● It's not that easy if the computation cost for the likelihood of a 
site varies among sites

→”The divisible load balance problem with shared cost and its 
application to phylogenetic inference”, 2015

→ “A novel heuristic for data distribution in massively parallel 
phylogenetic inference using site repeats”, 2018

→ “Data Distribution for Phylogenetic Inference with Site Repeats via 
Judicious Hypergraph Partitioning”, 2019 
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Likelihood Parallelization
Load Balance

● It's not that easy for partitioned datasets

→ “The Multi-Processor Scheduling Problem in Phylogenetics”, 2012

→ “The divisible load balance problem and its application to 
phylogenetic inference”, 2014

● It's not that easy if the computation cost for the likelihood of a 
site varies among sites

→”The divisible load balance problem with shared cost and its 
application to phylogenetic inference”, 2015

→ “A novel heuristic for data distribution in massively parallel 
phylogenetic inference using site repeats”, 2018

→ “Data Distribution for Phylogenetic Inference with Site Repeats via 
Judicious Hypergraph Partitioning”, 2019 

Essentially solved via approximation algorithm 
with very tight bound – not RAxML-specific

3 failed attempts!



  

Load Balance

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

species 1
species 2
species 3
.
.
.
.
species N

We parallelize over alignment sites/columns



  

Load Balance

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

species 1
species 2
species 3
.
.
.
.
species N

We parallelize over alignment sites/columns

Key assumptions:
- sites can be computed independently!
- all sites have the same computational cost!



  

Load Balance

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

species 1
species 2
species 3
.
.
.
.
species N

→ Every gene evolves according to an independent model M
i



  

Load Balance

→ Every gene evolves according to an independent model M
i

→ Computing time per model is proportional to the number of sites
→ But, every partition/gene has a constant 'start-up' time C
→ C is the time for calculating P(t)=eQit

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

+ 
c

+ 
c

species 1
species 2
species 3
.
.
.
.
species N



  

Load Balance

 Optimization problem
 Distribute sites to p processors such that:

1. All processors have the same #sites

2. The number of accumulated constant 
calculations C (i.e., # of partitions) per processor is 
minimized!

 Sites of a partition with model M
i
 can be distributed 

across several processors → in such a case the 
cost C for model M

i 
has to be payed at every 

processor



  

Load Balance

M
1

M
1

M
1

M
1

M
8

M
7

M
6M

5M
4

M
3

M
2

+ 
c

species 1
species 2
species 3
.
.
.
.
species N

M
5

+ 
c

CPU 0 CPU 1



  

Solution

 Finding the optimal solution is NP-hard 
 Approximation algorithm that it is only one off → 

we proved that CPUs will do at most one more 
'start-up' calculation with cost C than for the 
optimal solution 

 Using this algorithm actually improves 
performance 

→ theory meets practice



  

Results for ExaML
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Advertisement Section

Some of our tools ….
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ExaBayes

● Similar to MrBayes 
● Speed

– On DNA datasets it's approx. 30% faster
● Convergence/quality

● Better parallel scalability
● Executed on dataset with 200 taxa & 

100,000,000 sites on 32,000 cores of the 
Munich Supercomputer
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ExaBayes Scalability
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RAxML-NG
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RAxML-NG

What is suspicious about these plots? 
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RAxML-NG vs. IQ-Tree
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RAxML-NG vs. IQ-Tree

● RAxML-NG found best scoring tree most often (19 out of 21 datasets) 
● 1.3 – 4.5 times faster 
● Parallel efficiency of up to 125% !!!!!
● RAxML-NG is generally faster & returns higher scoring trees on taxo-

rich MSAs, IQ-Tree results exhibit lower variance (if you do multiple 
tree searches) 

● For MSAs with strong phylogenetic signal, IQ-Tree may require 
fewer searches than RAxML-NG

● RAxML-NG: A fast, scalable, and user-friendly tool for maximum 
likelihood phylogenetic inference, Bioinformatics, May 2019

● By the way, the IQ-Tree guys are our friends :-)  
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Inferring Gene Trees

● Often, we want to infer gene trees on 
thousands of genes to generate input for so-
called gene tree/species tree reconciliation 
methods → input for ASTRAL, SpeciesRax, 
or GeneRax 

● How do we efficiently orchestrate such 
computations on a cluster? 
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ParGenes Tool

● ParGenes: a tool for 
massively parallel 
model selection and 
phylogenetic tree 
inference on 
thousands of genes 
Bioinformatics 2019

● A classic scheduling 
problem! 

Cores not fully utilized
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Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization 
● Parallel I/O 
● Numerical Nightmares 
● Energy Efficiency
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Gene Amdahl



  

146

Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs
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Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs SEQ

PAR

2 CPUs

64s
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Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs SEQ

PAR

2 CPUs

SEQ

PAR

4 CPUs

32s

64s

16s
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Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs SEQ

PAR

2 CPUs

SEQ

PAR

4 CPUs

SEQ

PAR

8 CPUs

32s

64s

16s
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Amdahl's Law

SEQ

PAR

1 CPU

128s

10 secs SEQ

PAR

2 CPUs

SEQ

PAR

4 CPUs

SEQ

PAR

8 CPUs

At some point execution
times will be dominated
by the sequential part of
the code!

32s

64s

16s
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Amdahl's law

Linear speedup: n times faster with 
n cores!
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Amdahl's law

Linear speedup: n times faster with 
n cores!

Fraction of code that can be 
optimally parallelized



  

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Error checking & compression

Single CPU

01010101010101
01010000001101
010101010101

Binary file



  

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Error checking & compression

Single CPU

01010101010101
01010000001101
010101010101

Binary file

Parallel
ExaBayes



  

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Error checking & compression

Single CPU

01010101010101
01010000001101
010101010101

Binary file

Parallel
ExaBayes



  

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Single CPU

01010101010101
01010000001101
010101010101

concurrent
reads

Parallel
ExaBayes



  

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Single CPU

01010101010101
01010000001101
010101010101

concurrent
reads

Start-up reduction from 15 to 
below 1 minute!

Parallel
ExaBayes



  

I/O in ExaBayes

T1 ACGT
T2 ACC-
T3 ACGG
T4 AAGC

Plain text file

Parser

Single CPU

01010101010101
01010000001101
010101010101

concurrent
reads

Start-up reduction from 15 to 
below 1 minute!

Parallel
ExaBayes

1000 processors:
10 days versus 17 hrs
of wasted CPU time!
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Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization 
● Parallel I/O 
● Numerical Nightmares 
● Energy Efficiency



  

160

Floating Point Numbers

● Machine numbers are an imperfect mapping of the infinite real 
numbers to a finite number of machine values!
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Numerical Underflow
Conditional likelihood values become so 
small that they can not be represented on a
computer any more → underflow !!!!
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Overflow & Underflow

IEEE 754 standard for 32-bit floating point numbers
1 bit sign
8 bits exponent 
23 bits significand  
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Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and 
smaller as we move 
to the root 

0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0
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Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and 
smaller as we move 
to the root → 
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

We need to apply 
numerical scaling techniques

to avoid underflow!
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Post-order Traversal
preventing underflow

virtual root

Values in conditional
likelihood vectors
get smaller and 
smaller as we move 
to the root → 
this needs to be
handled!0.1

0.1

0.01

0.001

1.0 1.0

1.0

1.0
1.0

1.0

Typical approach:
1) Check if values are too small

2) If so multiply with some large number
3) Undo those scaling multiplications (somehow) in the end

for likelihood this undoing is easy   
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What went wrong?

● For DNA models without rate heterogeneity this scaling approach worked fine

→ check if all 4 conditional likelihoods at a given CLV and site are smaller 
than a minimum & multiply with large number 

● For DNA models with rate heterogeneity this doesn’t work 

→ jointly checking that all 16 conditional likelihoods for the 4 typical discrete 
rates are smaller than a minimum doesn’t work 

→ the spread of the values is too large because of the distinct rate categories 

→ scale individually per rate category 

→ higher computational cost 
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Single Precision? 

● We know that likelihood claculations are compute- and 
memory-intensive 

● So why not use single-precision (32 bit) instead of 
double precision (64 bit) floating point values?

● Numerics for Maximum Likelihood break down 
● 10-fold increase in scaling multiplications when using 

single precision  
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Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A  C  G  TA  C  G  T

AA
CC
GG
TT

A  C  G  TA  C  G  T

L^(k)

L^(i) L^(j)

Position c

P(t) = eQt is numerically
not easy 
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Felsenstein pruning

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A  C  G  TA  C  G  T

AA
CC
GG
TT

A  C  G  TA  C  G  T

L^(k)

L^(i) L^(j)

Position c

P(t) = eQt is numerically
not easy 
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What went wrong?

● In RAxML we used the matrix exponential function from the 
book - Numerical Recipees in C 

● Especially the Intel icc compiler tended to be very 
aggressive when trying to optimize this function 

→ numerical breakdown 
● Solution

 eigen.o : eigen.c $(GLOBAL_DEPS)

         $(CC) -c -o eigen.o eigen.c

Compile eigenvector decomposition function without 
optimization flags 
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P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

P(A)
P(C)
P(G)
P(T)

b_j
b_i

P(b_i) P(b_j)

AA
CC
GG
TT

A  C  G  TA  C  G  T

AA
CC
GG
TT

A  C  G  TA  C  G  T

L^(k)

L^(i) L^(j)

Position c

Consider that you only want to compute this triplet of conditional 
likelihood vectors of fixed length n.
L^(i), L^(j), P(b_i), P(b_j) are given as input and you just compute 
L^(k) as output of a micro-benchmark.
What do you expect the run-times to be if you just provide 
different input vectors L^(i)’, L^(j)’ but all of length n? 
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What went wrong? 

● When developing phylogenetic placement 
methods, we observed some inexplicable run 
time deviations for exactly this operation of about 
50%

● It didn’t make any sense since we executed n 
times the exact same arithmetic operations, just 
on different input data 

→ until we learned about de-normalized floating 
point values   
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Denormalized Floating Point 
Numbers

Intended to allow for gradual underflow to zero 

When de-normalized values are encountered, the processing cost inside the CPU 
for multiplications and additions is increased.

→ the runtimes are input-data dependent !
→ Problem with reproducibility of run time performance benchmarks
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Denormalized Numbers

● De-normalized floating point numbers and their impact on run-times and 
performance benchmark

● J. Björndalen, O. Anshus: “Trusting floating point benchmarks-are your 
benchmarks really data-independent?” Applied Parallel Computing. 
State of the art in Scientific Computing 2010; pp 178-188, Springer.

● Alexandre F. Tenca, Kyung-Nam Han, David Tran: “Performance 
Impact of Using Denormalized Numbers in Basic Floating-point 
Operations” IEEE, Forty-First Asilomar Conference on Signals, 
Systems and Computers, 2007.

● The concrete example with Conditional Likelihood Vector computations 
that yielded highly diverging run times due to de-normalized floating point 
numbers can be found here  
https://github.com/stamatak/denormalizedFloatingPointNumbers 

https://github.com/stamatak/denormalizedFloatingPointNumbers
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Outline

● Maximum Likelihood (Recap)
● Sequential Optimization
● Parallelization 
● Parallel I/O 
● Numerical Nightmares 
● Energy Efficiency



Phylogenetic Inference

CPU frequency correlates well with power for RAxML-NG



Phylogenetic Inference

Runtime x node power



Phylogenetic Inference

Runtime x node power

CPU fast enough to 
match memory access
speed, everything to the 
right means that we are 
waiting for data
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RAxML-NG v0.9 vs. v1.0
  energy saving

v1.0+ v0.9

-30%

default:
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Thank you for your Attention !
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