Optimizing and Parallelizing Phylogenetic Likelihood Calculations

Alexandros Stamatakis

ERA chair – Institute of Computer Science Fondation for Research and Technology Hellas, Greece

Associate Group Leader – Heidelberg Institute for Theoretical Studies, Germany

Professor – Institute for theoretical Informatics, Karlsruhe Institute of Technology, Germany

www.biocomp.gr (Crete lab)

www.exelixis-lab.org (Heidelberg lab)

The Biodiversity Computing Group

PEOPLE

PRO JECT

TEACHING

CONTACT

SOFTWARE

The Biodiversity Computing Group

Advancing computational Biodiversity Research in Crete, Greece, and beyond.

Funded by the European Union

PUBLICATIONS

TAI KS

We are hiring: stamatak@ics.forth.gr

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

We can save memory at the tips via a lookup table for these constant values

A G C C 1.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

What happens when we compute this inner vector?

- Compute Conditional Likelihood Array at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Length for a given Branch
- Optimize all Branch Lengths
- Optimize other Model Parameters

- Compute Conditional Likelihood Array at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Length for a given Branch
- Optimize all Branch Lengths
- Optimize other Model Parameters

- Compute Conditional Likelihood Array at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Leng for a given Branch
- Optimize all Branch Ler
- Optimize other Model P

Bayesian programs only require two operations so it is easy

- Compute Conditional Likelihood Array at an inner node
- Compute Likelihood at Virtual Root
- Optimize a Branch Leng for a given Branch
- Optimize all Branch Ler
- Optimize other Model P

But they need to design efficient proposal mechanisms & get the Hastings correction right

Rate Heterogeneity among Sites

- Biological phenomenon: different sites/columns evolve at distinct speeds
- Need to extend our model

Γ-Distribution

Discrete Γ-Distribution

An Abstract View of Γ

 $LnL = log(L0 * \frac{1}{4}) + log(L1 * \frac{1}{4}) + log(L2 * \frac{1}{4}) + log(L3 * \frac{1}{4})$

An Abstract View of Γ

4 times higher memory consumption

 $LnL = log(L0 * \frac{1}{4}) + log(L1 * \frac{1}{4}) + log(L2 * \frac{1}{4}) + log(L3 * \frac{1}{4})$

An Abstract View of Γ

 $LnL = log(L0 * \frac{1}{4}) + log(L1 * \frac{1}{4}) + log(L2 * \frac{1}{4}) + log(L3 * \frac{1}{4})$

Memory Requirements for lazy people

Phylogenetics: Memory Challenge

- Memory Footprints are becoming huge
 - **2011**: **190GB** (Ziheng Yang)
 - **2014**: $1TB \approx 140$ insect transcriptomes

"Whole-genome analyses resolve early branches in the tree of life of modern birds". *Science*, 46(6215):1320-1331, 2014

- **2017**: 7-8 TB for \approx 1600 insect transcriptomes
- 2019: 9TB for 350 bird genomes and 500,000 core hours for just computing 1 single ML tree

Phylogenetics: Memory Challenge

- Solutions
 - Algorithmic means & data structures
 - Supercomputers
 - Just don't infer trees on such supermatrices
 - Use gene tree ↔ species tree reconciliation methods?

→ e.g., ASTRAL or ML tools developed in my lab (GeneRax & SpeciesRax)

 \rightarrow but inference of gene trees has higher difficulty \rightarrow gene tree uncertainty

- Filter out relevant sites from alignment beforehand?

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Use Vector Instructions

- 128 and 256 bit vector instructions worked well
 - Part of production level tools
- 512 bit vector instructions → not so well (zero speedup)
 - · Likelihood calculations are memory bandwidth bound
 - We are moving along linearly among three conditional likelihood vectors
 - but don't do so many computations per vector entry

An Example

- We can also use vector instructions for parsimony calculations
- My open source parsimony code https://github.com/stamatak/Parsimonator-1.0.2
- On my laptop
 - ./parsimonator -p 12345 -s 125.phy -n X1

Parsimony tree [0] with length 193639 computed in 3.074347 seconds

./parsimonator-SSE3 -p 12345 -s 125.phy -n X2

Parsimony tree [0] with length 193639 computed in 1.576415 seconds

./parsimonator-AVX -p 12345 -s 125.phy -n X3
Parsimony tree [0] with length 193639 computed in 1.312245 seconds

An Example

- We can also use vector instructions for parsimony calculations
- My open source parsimony code https://github.com/stamatak/Parsimonator-1.0.2
- On my laptop
 - ./parsimonator -p 12345 -s 125.phy -n X1

Parsimony tree [0] with length 193639 computed in 3.074347 seconds

./parsimonator-SSE3 -p 12345 -s 125.phy -n X2

Parsimony tree [0] with length 193639 computed in 1.576415 seconds

./parsimonator-AVX -p 12345 -s 125.phy -n X3
Parsimony tree [0] with length 193639 computed in 1.312245 seconds

Why don't we get a good speedup for AVX (256 bit vectors)?

User friendly Vector Instructions: RAxML-NG

• Will automatically chose the best available vector instruction set

Analysis options: run mode: AL tree search start tree(s): random (10) + parsimony (10) random seed: 1657272853 tip-inner: 0.F pattern compression: 0N per-rate scalars: 0FF site repeats: 0N fast spr radius: AUT0 spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (auto)

Optimizations we have already seen

Tip vector lookup

Optimizations we have already seen

Tip vector lookup

Optimizations for special cases

Standard Optimizations

- Dedicated implementations for computing CLVs & Tip Vector lookups
- To be found in all modern tools: RAxML-NG, IQ-Tree, MrBayes, etc. etc.

Detect identical patterns and omit second computation

- Implemented in RAxML-NG production code
- But, totally messes up parallelization

 \rightarrow highly variable times to compute per-site likelihoods

JOURNAL ARTICLE

Efficient Detection of Repeating Sites to Accelerate Phylogenetic Likelihood Calculations 👌

K. Kobert, A. Stamatakis, T. Flouri 🕿 🛛 Author Notes

Systematic Biology, Volume 66, Issue 2, March 2017, Pages 205–217, https://doi.org/10.1093/sysbio/syw075 Published: 29 August 2016 Article history •

Can we also do this on changing trees?

- Trade memory for additional re-computations
- A cache-like replacement strategy
- We need to store at least log(n) + 2 conditional likelihood vectors to compute the likelihood on any unrooted binary tree with n tips

Fernando Izquierdo-Carrasco¹, Julien Gagneur² and Alexandros Stamatakis¹ ¹The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35,D-69118 Heidelberg, Germany ²European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany fernando.izquierdo@h-its.org, julien.gagneur@embl.de, alexandros.stamatakis@h-its.org

Figure 3: Different replacement strategies. The dataset was run with RAM allocations of 10%, 25%, 50%, 75%, and 90%, of the total required memory for storing all probability vectors. Run times are averaged across 10 searches with distinct starting trees.

The Real World

- Partitioned genomic datasets
- That's the kind of dataset type that real users analyze

Partitioned datasets

Partitioned datasets

Partitioned Data Example

Partitioned Data: We calculated the Likelihood on this tree

What's the likelihood of this topologically different tree now?

What's the likelihood of this topologically different tree now?

A terrace in tree space

Using Terraces to accelerate Likelihood Calculations

Back in 2010 looking at SPR moves

Implicit use of Terraces

JOURNAL ARTICLE

Time and memory efficient likelihood-based tree searches on phylogenomic alignments with missing

data 👌

Alexandros Stamatakis 🖾, Nikolaos Alachiotis

Bioinformatics, Volume 26, Issue 12, June 2010, Pages i132–i139, https://doi.org/10.1093/bioinformatics/btq205 Published: 01 June 2010

Dataset	Model optimization	Fast SPR	Slow SPR
d59_8	1.30	2.04	1.59
d94_1487	5.56	16.69	4.41
d126_34	1.34	1.79	1.80
d404_11	3.05	4.91	3.51
d2177_68	11.24	16.08	10.26
d37831_6	3.86	5.36	3.99

Table 1. Speedups of mesh-based likelihood approach versus standard approach

Take home message

- Sometimes don't be such an engineer!
- 2011

Terraces

 Essentially we have an identifiability problem here!

→ Different parameter values (tree topologies) yield exactly the same analytical likelihood score!

 Trees and datasets exhibiting terraces are more frequent in published empirical studies than one might think!

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Levels of Parallelism

Embarrassing Parallelism

MPI, Internet, Cloud

Coarse-Grained Parallelism in RAxML-NG

PC-CLUSTER

Bootstrapping

Original Alignment

Search Strategies ML Analyses

Levels of Parallelism

Embarrassing Parallelism
MPI, Internet, Cloud
Inference Parallelism
MPI, algorithm-dependent

Levels of Parallelism

P[i] = f(Q[i], R[i])

P[i] = f(Q[i], R[i])

Loop Level Parallelism

virtual root


```
for(i = 0; i < m; i++)
P[i] = f(Q[i],R[i]);</pre>
```

```
for(i = 0; i < m; i++)
P[i] = f(Q[i],R[i]);</pre>
```

Iterations *i* and *i*+1 can be computed independently of each other!

```
for(i = 0; i < m; i++)
P[i] = f(Q[i],R[i]);</pre>
```

Iterations *i* and i+1 can be computed independently of each other \rightarrow parallelize with OpenMP

```
#pragma parallel for
for(i = 0; i < m; i++)
P[i] = f(Q[i],R[i]);
```

```
some other sequential code
#pragma parallel for
for(i = 0; i < 100; i++)
    P[i] = f(Q[i],R[i]);
some other sequential code</pre>
```

some other sequential code

#pragma parallel for

for(i = 0; i < 100; i++)

P[i] = f(Q[i],R[i]);

some other sequential code

some other sequential code
#pragma parallel for
for(i = 0; i < 100; i++)
 P[i] = f(Q[i],R[i]);
some other sequential code</pre>

some other sequential code

some other sequential code

Loop-Level Parallelism \rightarrow allows to use more cache memory capacity

OpenMP parallelization

Thread Synchronizations in parallel RAXML-NG

- Computing the likelihood of a single tree concurrently on many cores:
 - Snapshot: Just 10 seconds of runtime using 16 cores/threads
 - 400 taxa, 7000 sites: **194,000** syncs
 - 1500 taxa, 1200 sites: **739,000** syncs

Parallel Post-order Traversal

Parallel Post-order Traversal

Parallel Post-order Traversal

Current MPI parallelization

Execution time

MPI_Allreduce()

 Reproducibility: Ideally we want to get bit-wise identical results regardless of the number of cores we use → not the case

Why? \rightarrow distinct round off error propagation

Execution time

Why? \rightarrow distinct round off error propagation

time

MPI_Allreduce()

- **Reproducibility:** Ideally we want to get bit-wise identical results regardless of the number of cores we use
- For this we need a reproducible MPI_Allreduce()
- Christoph Stelz "Core-Count Independent Reproducible Reduce", Bachelor thesis, Institute of Theoretical Computer Science, Karlsruhe Institute of Technology, Germany, April 2022.
- Of course there is a performance trade-off $\ \ \rightarrow \ still$ needs to be assessed

Scalability depends on dataset Shapes!

AGGATTT

Homo Sapiens

1,000,000 bp 100 taxa

Good scalability

Scalability depends on dataset Shapes!

100 taxa

User friendly Parallelism: RAxML-NG

Analysis options: run mode: ML tree search start tree(s): random (10) + parsimony (10) random seed: 1657272853 tip-inner: OFF pattern compression: ON per-rate scalers: OFF site repeats: ON fast spr radius: AUTO spr subtree cutoff: 1.000000 branch lengths: proportional (ML estimate, algorithm: NR-FAST) SIMD kernels: AVX2 parallelization: coarse-grained (auto), PTHREADS (auto)

• Will automatically chose the best parallelization strategy depending on alignment (MSA) length

Likelihood Parallelization Load Balance

• It's not that easy for partitioned datasets

 \rightarrow "The Multi-Processor Scheduling Problem in Phylogenetics", 2012

 \rightarrow "The divisible load balance problem and its application to phylogenetic inference", 2014

 It's not that easy if the computation cost for the likelihood of a site varies among sites

 \rightarrow "The divisible load balance problem with shared cost and its application to phylogenetic inference", 2015

 \rightarrow "A novel heuristic for data distribution in massively parallel phylogenetic inference using site repeats", 2018

→ "Data Distribution for Phylogenetic Inference with Site Repeats via Judicious Hypergraph Partitioning", 2019

Likelihood Parallelization Essentially solved via approxim

Load Essentially solved via approximation algorithm with very tight bound – not RAxML-specific

- It's not that easy for partitioned
 - \rightarrow "The Multi-Processor Sched groblem in Phylogenetics", 2012

sets

 \rightarrow "The divisible load balance problem and its application to phylogenetic inference", 2014

 It's not that easy if the computation cost for the likelihood of a site varies among sites

 \rightarrow "The divisible load balance problem with shared cost and its application to phylogenetic inference", 2015

 \rightarrow "A novel heuristic for data distribution in massively parallel phylogenetic inference using site repeats", 2018

→ "Data Distribution for Phylogenetic Inference with Site Repeats via Judicious Hypergraph Partitioning", 2019

3 failed attempts!

We parallelize over alignment sites/columns

We parallelize over alignment sites/columns

Key assumptions:

- sites can be computed independently!
- all sites have the same computational cost!

 \rightarrow Every gene evolves according to an independent model M_i

- \rightarrow Every gene evolves according to an independent model M_i
- \rightarrow Computing time per model is proportional to the number of sites
- \rightarrow But, every partition/gene has a constant 'start-up' time C
- \rightarrow **C** is the time for calculating $P(t)=e^{Q_i t}$

- Optimization problem
 - Distribute sites to p processors such that:
 - 1. All processors have the same #sites

2. The number of accumulated constant calculations C (i.e., # of partitions) per processor is minimized!

• Sites of a partition with model M_i can be distributed across several processors \rightarrow in such a case the cost C for model M_i has to be payed at every processor

CPU 0 CPU 1

С

С

Solution

- Finding the optimal solution is NP-hard
- Approximation algorithm that it is only one off → we proved that CPUs will do at most one more 'start-up' calculation with cost C than for the optimal solution
- Using this algorithm actually improves performance
 - \rightarrow theory meets practice

Results for ExaML

Fig. 4. Runtime comparison for ExaML employing algoritm LOADBALANCE, the cyclic data distribution scheme, or the whole-partition data distribution scheme.

Advertisement Section

Some of our tools

ExaBayes

- Similar to MrBayes
 - Speed
 - On DNA datasets it's approx. 30% faster
 - Convergence/quality
- Better parallel scalability
- Executed on dataset with 200 taxa & 100,000,000 sites on 32,000 cores of the Munich Supercomputer

ExaBayes Scalability

RAxML-NG

RAxML-NG

What is suspicious about these plots?

RAxML-NG VS. IQ-Tree

RAxML-NG VS. IQ-Tree

- RAxML-NG found best scoring tree most often (19 out of 21 datasets)
- 1.3 4.5 times faster
- Parallel efficiency of up to 125% !!!!!
- RAxML-NG is generally faster & returns higher scoring trees on taxorich MSAs, IQ-Tree results exhibit lower variance (if you do multiple tree searches)
- For MSAs with strong phylogenetic signal, IQ-Tree may require fewer searches than RAxML-NG
- RAxML NG: A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference, *Bioinformatics*, May 2019
- By the way, the IQ-Tree guys are our friends :-)

Inferring Gene Trees

- Often, we want to infer gene trees on thousands of genes to generate input for socalled gene tree/species tree reconciliation methods → input for ASTRAL, SpeciesRax, or GeneRax
- How do we efficiently orchestrate such computations on a cluster?

ParGenes Tool

- ParGenes: a tool for massively parallel model selection and phylogenetic tree inference on thousands of genes *Bioinformatics* 2019
- A classic scheduling problem!

Cores not fully utilized

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency
Gene Amdahl

1 CPU

1 CPU 2 CPUs

Error checking & compression

Parallel ExaBayes

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Floating Point Numbers

• Machine numbers are an imperfect mapping of the infinite real numbers to a finite number of machine values!

Numerical Underflow

Conditional likelihood values become so small that they can not be represented on a computer any more \rightarrow underflow !!!!

Overflow & Underflow

IEEE 754 standard for 32-bit floating point numbers

- 1 bit sign
- 8 bits exponent
- 23 bits significand

Post-order Traversal preventing underflow

Values in conditional likelihood vectors get smaller and smaller as we move to the root

Post-order Traversal preventing underflow

What went wrong?

• For DNA models without rate heterogeneity this scaling approach worked fine

 \rightarrow check if all 4 conditional likelihoods at a given CLV and site are smaller than a minimum & multiply with large number

• For DNA models with rate heterogeneity this doesn't work

 \rightarrow jointly checking that all 16 conditional likelihoods for the 4 typical discrete rates are smaller than a minimum doesn't work

- \rightarrow the spread of the values is too large because of the distinct rate categories
- \rightarrow scale individually per rate category
- → higher computational cost > BMC Bioinformatics. 2011 Dec 13;12:470. doi: 10.1186/1471-2105-12-470.

Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees

Fernando Izquierdo-Carrasco¹, Stephen A Smith, Alexandros Stamatakis

Affiliations + expand PMID: 22165866 PMCID: PMC3267785 DOI: 10.1186/1471-2105-12-470 Patterplie Free PMC article

Single Precision?

- We know that likelihood claculations are compute- and memory-intensive
- So why not use single-precision (32 bit) instead of double precision (64 bit) floating point values?
- Numerics for Maximum Likelihood break down
- 10-fold increase in scaling multiplications when using single precision

Accuracy and Performance of Single versus Double Precision Arithmetics for Maximum Likelihood Phylogeny Reconstruction

Simon A. Berger & Alexandros Stamatakis Conference paper 958 Accesses | 4 <u>Citations</u>

Part of the Lecture Notes in Computer Science book series (LNTCS, volume 6068)

Felsenstein pruning

What went wrong?

- In RAXML we used the matrix exponential function from the book Numerical Recipees in C
- Especially the Intel $\pm_{\texttt{CC}}$ compiler tended to be very aggressive when trying to optimize this function
 - → numerical breakdown
- Solution

eigen.o : eigen.c \$(GLOBAL_DEPS) \$(CC) -c -o eigen.o eigen.c

Compile eigenvector decomposition function without optimization flags

Consider that you only want to compute this triplet of conditional likelihood vectors of fixed length *n*.

 $L^{(i)}$, $L^{(j)}$, $P(b_i)$, $P(b_j)$ are given as input and you just compute $L^{(k)}$ as output of a micro-benchmark.

What do you expect the run-times to be if you just provide different input vectors $L^{(i)'}$, $L^{(j)'}$ but all of length *n*?

What went wrong?

- When developing phylogenetic placement methods, we observed some inexplicable run time deviations for exactly this operation of about 50%
- It didn't make any sense since we executed n times the exact same arithmetic operations, just on different input data

 \rightarrow until we learned about de-normalized floating point values

Denormalized Floating Point Numbers

Intended to allow for gradual underflow to zero

When de-normalized values are encountered, the processing cost inside the CPU for multiplications and additions is increased.

- \rightarrow the runtimes are input-data dependent !
- \rightarrow Problem with reproducibility of run time performance benchmarks

Denormalized Numbers

- De-normalized floating point numbers and their impact on run-times and performance benchmark
 - J. Björndalen, O. Anshus: "Trusting floating point benchmarks-are your benchmarks really data-independent?" Applied Parallel Computing. State of the art in Scientific Computing 2010; pp 178-188, Springer.
 - Alexandre F. Tenca, Kyung-Nam Han, David Tran: "Performance Impact of Using Denormalized Numbers in Basic Floating-point Operations" IEEE, Forty-First Asilomar Conference on Signals, Systems and Computers, 2007.
- The concrete example with Conditional Likelihood Vector computations that yielded highly diverging run times due to de-normalized floating point numbers can be found here https://github.com/stamatak/denormalizedFloatingPointNumbers

Outline

- Maximum Likelihood (Recap)
- Sequential Optimization
- Parallelization
- Parallel I/O
- Numerical Nightmares
- Energy Efficiency

Phylogenetic Inference

CPU frequency correlates well with power for RAXML-NG

Phylogenetic Inference

Phylogenetic Inference

Thank you for your Attention !

